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A MODIFIED FLOYD -- EVANS LANGUAGE

N. N. Bezruko’v UDC 51:681.3.06

The MFEL is described, which is a modification of the Floyd- Evans language FEL for writing
parsers.

In the early 1950s Markov [1] defined an algorithmic system that became known as a system of normal
Markov algorithms. Although Markov suggested normal algorithms as a technique for examining insolubility
in mathematical logic, it was found that the concept of reducing complex test transformations to various sim-
ple structural transformations (canonical substitutions) made it possible to program operations upon lines of
characters. Later on, .various languages were devised for processing characters on this basis (Comit [2],
Snoboi [3], et al.), which received the general name of languags of Markov-algorithn~ type [4].

Floyd [5] proposed a similar approach in the field of parsing, when in 1961 he devised a compact and
convenient notation for parsing algorithms. In that case, an algorithm for parsing an aritlm]etic expression,
which was previously dcscribcdby a long sequence of block diagrams [6], could be written by means of a set
of rules for reduction of the initial text. Floyd’s notation was developed to the level of a language for describ-
i,~g parsing algorithms by Evans, who in 1963 published a description of his ALGOL-60 compiler [7].

The parsing in Evans’ compiler was performed by interpreting the parsing algorithm written as a pro-
gram in a language later k~o\vu as the Floyd-Ewms language FEI,. h~ the 19(;0s, FELwas used with minimal
changes as a syntactic metalanguage in various compiler-construction systems, including Feldman’s FSL sys-
tem of 1964 [8]. FEL is interpreted in FSL directly during the parsing, as in Evans’ compiler. The need for
high interpretation speed was responsible for features of the treatment such as positional notation, rigid re-
strictions on the structure of statements, and the minimum number of auxiliary words.

A new stage in the deve.lopment of FEL began in 1970 with the publication [9] of an assembler version of
an FEL optimizing compiler. The method of compiling FEL programs described there increased the rate of
execution by a factor of 10 in comparison with interpretation. This provided syntactic recognizers comparable
in store volume and speed to those written by hand. In [9], an ELSE part was introduced into the FEL state-
ments, which was absent from previous versions of FEL, and it was suggested that a queueing system should
be used to organize the repeated scans of the input text in parsing. Further, names could be used for semantic
functions, so semantic information could be used during the parsing. The queueing also meant that FEL could
be used to simulate Marker algorithms, and the class of languages that could be analyzed in that form coIncides
with the class of recursively denumerable languages.

In 1971 Gries [10] discussed FEL in his seventh chapter; although Gries’ version was designed for inter-
pretation, it did provide a very good generalization of 10 years~ experience with FEL.

From 1965 onwards, various algorithms have been published for translating from BNF grammars for
some subsets of context-free languages, particularly to give an FEL program that constitutes a recognizer
[]1-13]. In 1972 an algorithm was published for translating a large subclass of affix grammars into an analy-
sis program in FEL [14].

The development of FEL occurred in isolation from papers on the use of Markov algorithms and papers
related to string-processing languages. It would therefore seem that Haynes and Sch~itte’s idea has remained
virtually overlooked, although it is readily transferred to the context of application of Markov algorithms and
of string-processing languages. In particular, the recognizer suggested in 1972 was based directly on Markov
algorithms [15], and although it had the power of Haynes’ version it was much less convenient and did not pro-
vide efficient parsers. In application to Snobol, optimization by compilation of standards (patterns in Snobol
terms) to give machine code directly was described only. in 1977 []6]. Also, the introduction of queues into
FEL makes the latter similar to the Comit language, and therefore it is possible to envisage the use of FEL in
string processing and further that languages of Markov-algorithm type could be used in syntactic recognizers.

Translated from Programmirovanie, No. 4, pp. 53-64, July-August, 1979.’ Original article submitted
August 10, 1978.
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Various researchers working independently of Floyd considered the representation of parsing as a se-
quence of structural transformations~ e.g., in 1970 Vel’bitskii and Yushchenko [17~ suggested a metalanguage
for context-seusltiy~; grIimlnars that was particularly iatcnd~d for dc.~c’rlblng a r~,cogniz~,r with on~ or mor~
pushdown stores. A form of such grammar convenient for computer input (the SM language) was proposed in
1972 by Lavrishcheva and Yushchenko [18]. In ] 973 Ve[’bitskii suggested the R-grammar metalanguage [19],

which he considered as an extension of the SM grammars.

An interpreter for a language analogous to R grammars has also been described [20[. The two meta-
languages are similar to FEL if a single pushdown store is employed, but the standard consists of a single
element.

We have developed the MFEL language as a modification of FEL, which is an attempt to extend Gries’
version via Haynes and Sch~itte’s concepts. A difference from previous versions is that MFEL uses the nota-

tion employed in languages of ALGOL type.

MFEL is a specialized language for writing parsers, so it does not have means for describing the
semantics of the language. Ilowever, all MFEL program is relatively readily translated into assembler or
into virtually any high-level langnage. Timrefore, it is convenient to write the parser in MFEI, and then em-
ploy a compiler from MFEL to get an equivalent program in the language that is employed in the syntactic
subroutine. A compiler from MFEL to PL/1 has been written for the ES OS system. A comparison is made

below between MFEL and Gries’ ve/r.sion of FEL.

Basic Language Concepts

Any MFEL program works with an input text and a stack, which holds the codes for the lexical units
(lexemes), which in MlVEL are called atoms. The topmost atom in a stack is called the window, and the group
of top atoms is called the top of the stack. In the initial state, the stack always contains the atom <!-).

The MFEL statements provide for execution of four operations upon the stack: insertion of atoms into
the stack, comparison of the top of the stack with a certain atomic configuration, replacement of the top of the
stack by a given configuration, and elimination of atoms from the stack. The description of the MFEL syntax

is given in the Appendix.

Lexical units are recognized by a lexica| analyzer, which is called by the SCAN statement in MFEL,
and which isolates from the text one lexeme and inserts the corresponding atom into the stack. For simplicity
we assume that the standard lexical analyzer in MFELdistinguishes the following lcxical categories: identi-
fiers, which correspond to the atom <I)’; auxiliary words (some subset of identifiers), in which the atom for
each coincides with the word itself (c. g., if IF is an auxiliary word for the input language, then it corresponds
to the atom <IF>); the separators t-, /, etc., for each of which the atom is the separatorltself; literals (ofth~
form of any string of letters), each of which corresponds to the atom <L) ; and integers, which torte’spend to

the atom < 9 >.

For example, consider an MFEL progtZam that consists only of SCAN statements and that analyzes the
line (A + E)/H; during the execution of the first SCAN statement the lexical analyzer inserts the atom <(>into
the stack, and on the second it inserts <I> (identifier), on the third <+>, etc. The analyzer inserts (-! } into

the stack on reaching the end of the input text.

The name "standard"lsglventoaconflgurationofatoms to be compared with the top of the stack. The top
of the stack coincides with the standard If all the positions in the standard coincide with atoms at the top of the.
stack. The comparison is performed from right to left, so the window in the stack is compared with the right-
most atom in the standard. The comparison of the top with the standard is specified in MFE L by the Ig state-

meat.

The top of the stack can be replaced in MFEL only after comparison with some standard (in the condi-
tional statement). Execution of the replacement statement causes the deletion from the stack of a number of
atoms equal to the number in the standard. Atoms from the replacement statement arc then inserted into the
stack. The leftmost atom from tile replacement statement is inserted first into the stack.

The POP statement is used in deleting atoms from tile stack in MFEL; tile POP statement can specify
either the number of atoms to be deleted or the standard to be used in the replacement. If neither the number
of atoms to be deleted nor the standard is given, then only a single ato~n is deleted from tile stack, lVor
example, the statement
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POP

denotes deletion of all the atoms present in the stack, because the atom (!-) is the left limiter for the input
line.

..Examples of MFEL Programs

Example 1._ ~Prog.ram ~ EXPRES (Fig. 1).
accordance with grammar F:

This program is used in analyzing arithmetic expressions in

<Exp) :: = <Ex,~ (÷t--) <TERM>.
<TERM> :: = <S~T> 1 <W~> (, !/) <s~)

<SET} :: = <[> [ <9> !*(* <EXP> ,)*

We first consider the structure of the IF statement with label @T, which specifies comparison of the top
of the stack with the standard <TERM) (<~)! </)) <SET)ANY; the right-hand element in the standard is the
auxiliary word ANY, which means that the ’corresponding position in the stack does not participate In the com-
parison. The standar(l is scanned from right to left. Before ANY we find the atom <SET), and the third ele-
ment in the standard is the class (<*>! </>), which consists of the two atoms <*> and </>. This element in the
stack coincides with this class in the standard only if it is one of the atoms entering into that class. The fourth
and last element in the standard is the atom <TERM>. Therefore, this standard may coincide with various
configurations of atoms at the top of the stack.

When the top of the stack coincides with the standard, the statements appearing in the THEN group of the
IF statement are executed. In the present case, the THEN group consists of a sing|e statement, the statement
for replacing the top of the stack by <TERM> ANY, where ANY in the replacement statement corresponds to the
atom termed the substitution atom, which is not involved in the comparison. Therefore, when the standard
coincides with the top of the stack the top four atoms are deleted from the stack, and then the stack receives
the atom <TERM> and the substitution atom.

If coincidence does not occur, the ELSE group is executed, which begins with the auxiliary word ELSIE,
which, as in ALGOL-68, is a contraction of ELSE IF. Therefore, the ELSE group contains a nested IF state-
ment, which specifies comparison of the top of the stack with the <SET) ANY standard. The THEN group in
this statement also consists of a single statement, namely that for replacement of the top of the stack. The
auxiliary word FI terminates the statement.

The ~EXPRES progr.am also contains the three statements ER, GO, and STOP. The ER statement is
intended to output diagnostic messages during parsing, while GO controls the jump to the corresponding label,
and STOP halts execution.

We now consider the operation of ~ EXPRES.

2

5

9 t

ti

13 1
t5 t
t6
20
22 1
24 1

’ 25
28 1
32 1
35 t
36 1
37

I~EXPRES: PROC MAIN;
~, THIS PROGRAM PARSES
1. ARITHMETIC EXPRESSIONS */

SCA N;

IF (<.I> I <9>) THEN <SET}; SCAN;
ELSIE ((> THEN SCAN; GO
EI,SE E|| 1’ .I:I]ROR !.’1;

(~T:
IF (TERM){(,>I</>( (SET> ANY THEN(TERM) ANY;

ELSIE (SET) ANY THEN (TERm4>’ ANY;

IF (TERM)(<*)[(/>) THEN SCAN; GO @M; FI;
IF <EXP> (<-{->i<--)) <TERM> ANY THEN <EXP> ANY

ELSIF <TERM> ANY THEN <EXP> ANY;

IF <EXP) (~->l<-->) THEN SCAN; GO @M;
ELSIE <(> <EXP> <)> THEN <SET); SCAN; GO ~T;-
ELSIF <I--> <EXP) (--I>; THEN <r); STOP’,
ELSE EI3[’ ~ofi 2/I;

END 13EX PILES;
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~**START TRACE ~EXPRES
STACK AFTER OPER.
STACK AFTER OPER,,
STACK AFTER OPER.
STACK AFTER ODER.

STACK AFTER OPER.
STACK AFTER OPER.
STACK AFTER OPER.
STACK AFTER OPBR.
STACK AFTER OPER,

2(SCAN;)
7(SCAND
5(REPLACE TOe)
5(SCAN0

i5 (REPLACE TOP)
24 (REPLACE TOP)
26(SCAN;)

5 (REPLACE TOP)
5(SCAN;)

STACK AFTER OPER. iS(REPLACETOP )
STACK AFTER OPER, 22(REPLACE TOP)
STACK AFTER OPER. 80(REPLACE TOP)
STACK AFTER OPER, 30(SCAN;)
STACK AFTER OPER’. 15(REPIakCE TOP)
STACK AFTER OPER. I?(SCAN;)
STACK AFTER OPER. 5(REPLACE TOP)
STACK AFTER OPBR. 5(SCAN;)
STACK AFTER OPER. 13(REPLACE TOP)
STACK AFTgR OPER. 24(REPLACE TOP)

STACK AFTER OPER, 34(REPLACE TOP)
*** END TRACE ~EXPRES.

Pig. 2

I-- I
I-- SET

I-- SET i

I-- TERM

I-- BXP
I-- EXP

I-- EXP
l-- EXP

I-- EXP

I-- EXP)

l-- ;ET

I-- SET
l-- TERM
I-- TERM I
I-- TERM

~-- TERM
I-- TERM--I
I-- E~P

+
+
+
+
+
+
+

I
SET
SET

I
SET
SET)
TERM)

The program begins by scanning the first lcxeme and inserting the corresponding atom into the stack.
Statements 3 and 6 check whether this atom begins a set. If it cannot, statement 9 outputs an error message.
If one of the atoms <I> or <9} is encountered, then this is replaced by (SET>. Then the next lexeme is scanned
and control is transferred to the next statement, i.e., statement 11. If the set’begins with a left parenthesis,
then statement 8 transfers coatrol to statement 3. Before the execution of statement I 3, the set always con-
tains (SET) ANY and statement ]4 is obliged to replace (SET> by <TERM), but first o[ all it is necessary to

check whether the following rule is applicable:
<TERM> :: ~-~ <TERM> (* ! /) <SET>.

When one of these reductions has been performed, a check is made whether one of the atoms < ~ > or
occurs in the window. If the answer is yes, the following lexeme is scanned and a return is made to statement

3 in order to prepare for the reduction <TERM) : : : <TERM> (* ]/) <SET), for which purpose it is necessary
to find a phrase that is reducible to (SET>. If the window contains an atom different from <*> and from
then either the appropriate reduction is performed for <EXP ~ or an error message is output.

Figure 2 illustrates the tracing of expression (A + E)/H by the ~ EXPRES program as impiemented in
the MFEL translator to facilitate program debugging. During the tracing, the contents of the stack are printed
out when any change is made, as well as the nmnber and type of the statement causing the change.

Example 2. The ~PALINDROM Program (Fig. 3)~ We suppose it is necessary to write a recogmizer

for a l-anguage d~scribed by grmnmar F:

<p>::= +<’p>+I--<P>--~+I--
This grammar describes a palindrome of characters + and - with an unlabeled center [21]. Note that F

parsing this grammar is a two-pass algorithm that on

is not an LR(K) grammar. The simplest technique for and in the second finds the center and performs the suc-
the first pass determines the degree of the palindrome
cessive reduction. Figure 3 shows this algorithm as the ~PALINDROM program.

This program uses various constructions absent from the previous example. These include a repetition
statement, a looping statement, and the phrases TO and FROM in the SCAN statement. We first consider the
repetition statement. This introduces elements of four types: the semantic block SEMAN, which consists of
one semantic action ~= COUNT, the filter block TEST, which consists of the single filter @MIDDLE, the queue
BUFFER, and the syntactic class %SIGN, which includes the two atoms <+> and <-).

In most current compilers there is a clear distinction between the software that parses the input program
and the software that generates the object code (scmantlc procedures). This distinction between syntax and
semantics provi(Ics for formalization and automation of the parsing, together with the use of a more systematic
approach in Impiementingthe semantics. Usually the semantic procedures, each with Its own nmnber, are
combined into a semantic block. The number of the cell procedure is transmitted ns a parameter when the
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i ~PALINDROM: PROC MAIN;
2 DCL SEMAN ACTION(~COUNT : i),

TEST FILTER(~MIDDLE : t),
BUFFER QUEUE,
%SIGN CLASS (<4-) I

/, READ INPUT TEXT INTO BUFFEB ,/
3 DO FOBEVER;
4 t SCAN TO BUFFER; :~COUNT;
6 I IF %SIGN TIIEN;
8 2 ELSIF <--I> TIIEN POP<[-->; GO (~M[DDLE;

it 2 ELSE EI/[’ NOT PALINDROME .’]; STOPi
t3 2 FI;
t4 t END;
i5 @MIDDLE : /, SEARCH FOR CENTER OF PALINDROME */

DO UNTIL ~MIDDLE;
t6 t SCAN FROM BUFFEI~;
i7 i END;

/, REDUCTION OF CENTER OF PALINDROME ,/
i8 IF %SIGN THEN (W); SCAN; FI;
22 DO FOREVER;
23 i 1F (~-) (W) (-t-) THEN
25 2 ELSIF (--) (W) 4--) THEN
27 2 ELSIF d--) (W) G--l) THEN (I’); STOP;
30 2 ELSE ER[’NOT PALINDROME*]; STOP;
30 2 FI;
33 i SCAN FROM BUFFER;
34 i END;
35 END ~PALIND ROM;

Yig. 3

semantic blocl~ is called. The overall volume of Ihc semantic block may be very large, so one commonly em-
ploys several semantic blocks, each of which contains perhaps 10-100 semantic procedures. The large num-
ber of procedures means that it becomes difficult to recall what number and what block relates to a particular
semantic procedure. Therefore, the semantic procedures in MI~EL (which are called semantic actions or
simply actions) have names, and the block identifier and the number of a procedure in the block are specified

in the DCL statement.

Therefore, the phrase SEMAN ACTION (:~ COUNT: I) means that the semantic action :~= COUNT is in
the semantic block SEMAN as number 1.

The phrase TEST FILTER (~ MIDDLE: 1) is the call to the block of filters TEST, which consists of the
single filter 4~ MIDDLE; the filter concept (semantic function) is analogous to the action concept. The differ-
ence is that filter may be an element of a standard and return a signal to the calling point (which takes two
values, which arc called TI/IJE and FAI~SE, although there arc no Boolean (luantitlcs in MI~EL). This signal
is used in comparing tile standard with the top of tile stack, and it is considered that there is no coincidence if
the filter returns the signal FALSE.

The queue call in MFEL serves to organize repeated scanning of the input text during translation.

The class call puts some sets of atoms into correspondence with the class name. In the I~ EXPRES pro-
gram, there is a class called by context. In this program %SIGN is the name of an explicitly called class,
which has the two atoms (+) and (-}. The name of the class can be used in the standard, in the statement for
replacement of the top of the stack, and in the conditional-jump statement.

We now consider the operation of ~ PALINDROM; the DO FOREVER statement specifies infinite repeti-
tion of the statements appearing within it. These statements 4-~3 implement the first pass of the text. The
statement SCAN TO BUFFER provides for transferring an atom to the stack and storing the current lexeme in
the queue having the name BUI~I;ER. In general, if the TO phrase is nsed in the SCAN statement, the current
lexeme and the corresponding atom are entered into the queue, and when FROM appears in the SCAN statement
then the queue is used as the source of input text. Both phrases may be given in a single statement, and in that
case they may both point to the same queue, in which case the current lexeme is transferred to the end of the
queue after the corresponding atom has been inserted into the stack. This means that multiple passes can be
organized.

Statement 5 specifies execution of the semantic action =~ COUNT; it is assumed that this action consists
in counting the number of elements in the palindrome. When the end of the text is reached, statemen~ 9 clears
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t ~REPLACE: PROC MAIN;
2 DCL OUTPUT ACTION(~:WRITE: t);
3 DO FOREVEII;
4 I SCAN;

5 t DO UNTIL((;5 ~ (--~)); SCAN’, END;
8 t IF (~l) TIIEN STOP;

tO 2 ELSIF 41--5 4pUT5 <EDIT) 4(5 (I) 4)5 40 4A5 4)) (;)
THEN 4[--5 4CALL) (OUT) 4(5 (1) ()> 4;);

12 2 FI;
t3 t ~WItITE; POPd--5;
i5 t END;

t6 END I~REPLACE;
Fig. 4

the stack completely and statement 10 passes control to the statement with label @ MIDDLE, which indicates

looping.
Apart from an infinite loop statement in MFEL, there are two looping statements of other types: the

WttlLE statement, which Is executed while the top of the stack coincides with tile standard, and the UN’rIL
statement, which is executed until the top of the stack coincides with the standard. If on the first execution
the top of the stack coincides (does not coincide) with the standard, then the body of the UNTIL(WHILE) loop

is not executed.
In the present case, tile standard consists of the filter ql MIDDLE, ~vhich returns information on the first

pass in accordance with the q~COUNT action, where the first M accesses (M is the degree of the palindrome)
result in the signal FALSE, i.e., until the scanned atom is the center of the palindrome.

Statement 18 reduces the center of tile palindrome. Statements 23-32 reduce the stack in accordance
with F. If the atoms equidistant from the center do not coincide, then statement 30 outputs an error message.

Example 3. The Program ~ REPLACE (Fig. 4). MYEL is in the main intended for writing syntactic
recognizers, but "it can be ~ed for writing string-pro~essing programs. As an example of the latter use we
consider context-dependent text editing, h~ some PL/1 programs we have to replace all the statements

PUT SKIP EDIT ((IDENTIFIER)) (A);

by statement
CALL OUT ((IDENTIFIER

Figure 4 shows a program for performing this substitution. It is assumed that the lexical analyzer
recognizes the lexeme PUT, SKIP, EDIT, CALL, OUT, A as atoms.

The operation begins wittl scanaing the first lcxeme. The loop consisting of st~temcnts 5-7 provides for
scanning the input text as far as the semicolon. If an end-of-file condition is detected, statement 9 completes
the operation. If this is not so, s.tatement 10 makes a check on the top of the stack for a configuration corre-
sponding to the statement to be replaced. If the top of the stack coincides, a replacement is made by the con-

figuration corresponding to tile statement
CALL OUT ((IDENTIFIER));

The semantic action 4~WRITE performs output of the statement corresponding to the stack configuration,
which passes to the output file. It is possible to recover the statement from the stack configuration becaase
any implementation of the Floyd- Evans language uses at least two parallel stacks [101. We have already dis-
cussed the syntactic stack, and the second one, which is catted the semantic stack, contains either the lexeme

itself or else a reference to the line in the table that holds this lexeme. More details of the semantic stack are
given somewhat tater on. An important point here is that recovery of the initial text (apart from comments) is

possible from the configuration of the atoms in the stack.

Comparison of MlrEL with Grtes’ l~EL Version

MFEL contains all the facilities that exist in Gries’ version; for example, the automatic selection of one
out of several semantic subroutines in calling a semantic action (CLASSNO in Gries’ version) is implemented
in MFEL by transferring to the semantic actions a parameter that may be a literal, an atom, or a class. The
resemblance of MFEL to Gries’ version is particularly clear if one compares the ~EXPRES program (Fig.

with the program shown in Fig. 7.1 of [101.
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On the other hand, MFEL differs in structure from the FEIJ of [1()1 and is closer to languages of ALGOL
type, since MFEL allows statement nesting, and tmconditional jmnps arc defined explicitly, along with the call

statement, the ELSE part of the conditional statement,, mM looping statements.

The facilities of lhe conditional statement and of the statement for replacing the top of the stack are ex-
tended in MI. Ei, by virtue of the filter technique (it is possible to use semantic information on comparing a
standard with the top of the ’stack and in replacing the top of the stack).

Some of the MFEL statements are also absent from [10], which include the statement for clearing the
stack, the write statement, the statement for skipping a lexeme, and the statements for operating with a
queue. Also, programming of algorithms for the weak-precedence method [13] is facilitated by the conditional
statement and the use of compound labels, together with an ei’ficient compilation method (see below).

On the whole one can say that MFEL provides not only a more convenient notation but also various fea-
’tures that extend the applicability of the language and improve the performance of the recognizers. The class
of grammars analyzed by MFEL coincides with the class of recursively denumerable grammars, whereas the
class of grammars analyzed by FEL is restricted to deterministic context-free languages. However, this is
attained at the expense of c~)mplicating the language and therefore the implementation.

Some Implementation Features

It is assumed that there is some algorithmic language linked to 1;EL in wMch the semantic procedures
can be written when one comcs to write syntactic recognizers (Assembler, pascal, PL/1, or any other suit-
able language). It is therefore simpler and more convenient to translate the Floyd-Evans language not into
machine code but into the language in which the semantic actions are written. This facilitates debugging the
compiler and simplifies the link between the syntactic ,and semantic blocks.

tlere we take PL/I as that language. We have chosen PL/I not only on account of its growing popularity
and the good performance of compilers written for the ES computers, but also because it is possible to write
an MFELcompiler in PL/]. This compiler is of one-pass type and uses recursive descent in parsing. The
volume of the translator is about 1500 PL/1 statements.

The performance of recognizers written in MFEL is very much dependent on how efficiently the opera-
tions are performed upon the syntactic stack. In the MFEL system for the OS ES system, the syntactic stack
is simulated by the array BINARY FIXED (31), which makes it possible to implement the comparison of the
top of the stack with a standard without using procedure calls. The semantic stack has been implemented as
an array of POINTER type, which contains pointers to the lexeme table. The latter is organized by hashing
(a chaining method is used [10]).

The queues are organized by means of the store techniques of PL/1; each list element consists of an
atom field, a field indicating the pointer to the lexeme in the table, and a field containing a pointer to the next
link in the list. Each queue also has txvo pointers that define the start and end of the queue,

Composite labels are compiled into indexed labels in PL/1. The atoms are mapped into indexes by
means of a hashing function constructed by means of SprugnolPs algorithm [22].

The procedure for outputting diagnostic messages is constructed as a simple macrogenerator, which
provides better messages. The method is most readily illustrated on an example: let %L denote a macrocall
with a body corresponding to the preceding lexeme, while %R denotes a macrocall whose body corresponds to
the current lexeme, and %P, (lenole, s a ma(:rocall with a body AIC’I’EII %1, INSTI,;AD ()1,’; %0 denotes a macro-
eali with a body FOUND %11. Thcnexecution of the statement EIt[*IEO54 ~’I) 1DEN’FIFIER 9~O~];resultsln the
output of the following diagnostic message provided that the preceding lexeme was 02 and the current lexeme
is TEMPLATE:

IEO54AFTER 02 INSTEAD OF IDENTIFIER I;OUND TEMPLATE

Although the compiler is of small volume, it implements various functions that facilitate debugging
MFEL programs. These include the scope for indentation in the listing oli4oops and the conditional statements
(the NEST option), a cross-reference table forming part of the table of program elements (the ATR option), the.
scope for generating accesses to the MFEL debugger after certain types of statements, in particular, after
statements that operate with the stack (the TRACE option), and certain others.
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The compiler also provides local optimization of the program in accordance with the method of [9~ (the

OPT option).

The MFEL compiler has beeh operating since May 1977; in particular, MFEL has been used to write a
syntactic recognizer for a compiler working with the Ryaod language [23] for the ES computers. The accumu-
lated experience has shown that this modification of FEL facilitates research and use, and also raises the level
of the language somewhat in the sense that an MFEL program is somewhat shorter than the equivalent FEL
program.

In MFEL programming, one can use different parsing methods for the different parts of the language,
which is the optimal strategy for parsing. For example, in tile Ryaod compiler the technique is top downwards
parsing down to the statement level and bottom upwards for the statements themselves.

As the analysis is programmed in MFEL, it is simple to add additional operations to define error types
more closely or to overcome errors in the syntax analyzer. This makes it possible not only to output valuable
diagnostic messages but also to improve diagnosis on tim basis of experience with the translator, tlcre we
must note that it is extremely difficult to provide high-grade diagnostics in an automatic recognizer compiler.

Programming a recognizer in MFEL requires more effort than in automatic recognizer generation from
the grammar, but this is offset by the greater freedom from the need to match the analysis to generation of the
object code, and also by the ease of making changes. In addition, the recognizers are fast.

MFEL also allows one to experiment with the syntax of possible constructions without altering the
semantics, or vice versa. Implementation of a language can also go in parallel with improvement of the lan-
guage itself, and also with definition of efficient compilation methods. A difference from encoding directly
from a high-level language is that fewer decisions are required that later turn out to be difficult to alter.
This makes MFEL an attractive means of designing specialized languages.

APPENDIX

Description of MFEL Syntax

This description is given to enable the reader to obtain a fuller conception of the language. In many
respects it is not as accurate as it might be, since it is assumed that the reader is familiar with PL/1 and
does not want to be concerned with the description of obvious and unimportant details. A modified BNF is
employed in the description [10[. In this version of BNF the repetition of a string is indicated by the use of
braces (null and higher repetitions are permitted). The choice of one out of several strings (factorization) is
denoted by parentheses, while the strings themselves are separated t)y exclmm~tl(m marks. Auxiliary strl~gs
are shown in square brackets. The MFEL characters that are tile same as the BNF mctacharacters are en-
closed in double quote marks.

<identifier) :: : (letter apart from~, @,~){ (letter) ! (digit)}
<simple label) :: = ~ <identifier)
<action name) :: = ~<identifier)
<procedure name) :: ~<identifier)
(class name) :: =% <identifier) ! % {(character)}%
<atom) :: = ’(" <character){ <character)}
(literal) :: = { <character apart from quote)}
<comment) :: = /* <character)} */
<procedure) :: = (procedure name): PROC [RECUR] [MAIN]; {<statement)] END

(procedure name );
(label) :: = (simple label) ! <compound label)
(compotmdlabel) :: = <simple label) <atom)
<call statement) :: = DCL (call){, (call)}
<call) :: = <call semantic block)

! <call filter block)
! (call queue ) ! <call class )

(call semantic block) :: = (identifier) ACTION
,’(" <action name): <integer){ , <action name): <integer)] ")’
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(call filter block :: = (identifier) FILTER
"(" (filter name): (integer) {, <filter name): (integer) } ")"

(call queue ) :: - (queue name ) QUEUE
<callelass> :: <class name) CLASS "(" (atomT{"!" <atom)}
(conditional statement) :: --. IF <standard) TIIEN (statement)t <statement)}

ELSE (statement> { <statement>}
FI;

(standard) :: = (element> { <element) }
(element) :: = (atom) ! ANY ! (affix> ! (class name>

I (context-called class)
<context-called class) :: = "(" (atom) { "!’ (atom) } ")"
(affix) :: = <filter name)!"(" <atom) ~ <filter name)
(loop statement) :: = (loop head) { <statement) } END;
(loop head> :: = DO FOREVER; ! DO ( WHILE,! UNTIL ) (’standard>;
( uneonditionM jump statement ) :: = GO < label ) ;
<conditionM jump statement> :: = GO (label) <class name);
<procedure call statement) :: = <procedure name);
(return statement) :: = RETURN;
<stop statement) :: = STOP;
(input statement> :: = SCAN [FROM (queue name)] [TO (queue name
< write statement) :: = ADD < standard ) [TO (queue name )1 ;
(skip statement) :: = SKIP "(" (integer) ")" [IN (queue name

] SKIP (standard) [IN (queue name)];
(Icxcme-replaccmcnt statement) ;:-: { (atom) I ANY] (class name) I (affix)};
(sta(:l~--chmr ~;lat,~mcn[) :: l)()l’ "(" (ln[c|,,cr) ")"; l I)()P <stm~dar(I);
(semantic-action statement) :: -:, (action name) "[" (parameter) "l";
(parameter) ::= <atom) ! (class name) ! (literal)
(diagnostic-message output statement) :: = ER "[" (literal) "]’ ;
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ANALYSIS OF WORD SIMILARITY IN SPELLING

CORRECTION SYSTEMS

A. A. Sidorov UDC 681.3.068

Automatic spelling correction in programming systems is considered. A measure of word simi-
larity is introduced and an algorithm for computing this measure is proposed.

ALl current translators from artificial Languages (programming Languages, operating-system task-controL
languages, etc.} detect syntax errors and issue appropriate diagnostics. Spelling mistakes are one of the error
types detected by translators. Over 80% of all spelling errors arise when one or several symbols are distorted
in a word in the source program [1]. These errors often can be corrected automaticaLLy by the compiler if it is
equipped with a speLLing correction procedure [2]. When a spelling error is detected, the compiler calls the
spelling correction procedure which compares the wrong word with a symbol table and attempts to determine
(using the specific language features} whether the offending word is a distortion of one of the table words.

This error-correction scheme suggests that one of the crucial aspects of speLli~g correction is the de-
velopment of an effective word-similarity measure. This measure should provide a numerical index for word
matching,~ yet its calculation should not excessively tax the computer resources (memory and compilation time}.

Various approaches havc been tried to solve this problem. A similarity measure in the COliC langnage
is defined as the probability that the two words match, considering the number of identical Letters and the pos-
sibility of pairwise transpositions of symbols [2]. A similar approach is described in i3[. The shortcoming of
this similarity measure is that it assumes known the probability of one symbol being substituted for another for
all pairs of symbols. The resulting speLLing, correctiou procedure is thus dependent on the particular alphabet
used.

Morgan’s spelling correction procedure [1] has been incorporated in the CUPL and DPL compilers and in
the CorneI1-HASP operating system for the IBM-360. Morgan’s measure is the number of elementary errors
in the input word. Elementary errors include omission of a single symbol, distortion of a symbol, transposi-
tion of two adjoining symbols, and insertion of an extra symbol into the word. A distorted word is correctible
if it contains a single elementary errdr. This approach will correct up to 80% of speLLing errors [4]. Having
narrowed down the scope of spelling correction, Morgan succeeded in creating an effective algorithm whose
execution time in general is proportional to word length.

Wagner [5] expanded Morgan’s method and proposed as a measure the minimum number of editing opera-
~ions needed to restore th~ distorted line to a syntactically correct line. Wagner distinguishes between three

T’ranslated from Programmirovanie, No. 4, pp. 65-68, July-August, 1979. Original article submitted

June 6, 1978.
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