
, |

Volume 11, Number 2

AND

MMING
PUT[l] SOFTWABE

A translation of Programmirovanie

January, 1986
¯

March-April, 1985

PROGRAM~ING THEORY
Computations on Types --A. V. Zamulin and I. N. Skopin
Composition Progran~ning and Functional Programming: A Com-

parative Analysis- N. S. Nikitchenko

and V. N. Red’ko
Metal-Jnear Schemes with Transfer of Constants

--L. P. Lisovik

PROGRAMMING SOFTWARE AND SYSTEM PROGRAMMING
Simple Method of Organizing a Relational Data Base Providing

Information on the State of Developement of Large
Programming Systems -- N. N. Bezrukov

PROGRAmmING SOFTWARE INFORMATION SYSTEMS
Description Language for Cartographic Data

-- T. M. Askerov and A. A. Agaev
Polynomial Queries to Relational Data Bases

-- A. B. Livchak

COMPLEX SYSTEMS AND THEIR PROGRA~g~ING SOFTWARE

Effectiveness of Multiprogramming -- A. A. Strel’tsov

and Yu. G. Mironov

PROGRA~g~ING SOFTWARE FOR AUTOMATIZATION OF INFORMATION

PROCESSING
Formal Transformation of Structured Sorting Algorithms

-- G. E. Tseitlin

CONTENTS

Engl./Russ.

65 3

74 15

85 29

93 44

102 60

107 66

113 73

il8 79

The Russian press date (podpisano k pechati) of this isst~e was 3/18/1985.
Publication therefore did not occur prior to this date, b~t~must be as~urned
to have taken place reasonably soon thereafter.

The proof of this theorem can be obtained by using the method of proof of Theorem I, the
outline of the proof of Lemma I in [3], and the solvability of tlfe problem of nonemptiness of

a set perceived by a ETC-converter [2, 3].

LITERATURE CITED

" Dokl
L.P. Lisovik, "The problem of equivalence for converters over labeled trees, ¯

Akad. Nauk Ukr. SSR, No. 6, 77-79 (1980).
2. L.P. Lisovik, "Metalinear recursive schemes over labeled trees," Programmirov.anie, No.

5, |3-22 (;983).
3. L.P. Lisovik, "On the problem of equivalence for converters over E-trees with finitely

reversible counters," Kibernetika, No. 5, |9-24 (|984).

4. L.P. Lisovik, "On solvable problems for metalinear schemes," Dokl. Akad. Nauk Ukr. ,~S.R,

No. 2, |30-|33 (;979).

5.
V. Yu. Romanovskii, "Solvability of problem of equivalence of linear unary recursive
schemes with individual constants," Dokl. Akad. Nauk Ukr. SSR, No. |, 72-75 (|980).

6.
V.N. Red’ko and L. P. Lisovik, "The problem of equivalence for finitely reversible

counters," Kibernetika, No. 4, 26-29 (1980). ,,

7. S. Garland and D. Luckham, "Standard schemes, recursive schemes, and formal languages,

Kibern. Sb., No. |3, 73-| |9 (1976).
8. E.L. Post, "A variant of a recursively unsolvable problem," Bull. Am. Math. Soc., 52,

No.. 4, 264-268 (|946).

9.
V.M. Glushkov, "Theory of automata and formal transformations of microprograms,"

Kibernetika, No. 5,’ |-9 (|965).

PROGRAMMING SOFTWARE AND SYSTEM PROGRAMIVIING

SIMPLE METHOD OF ORGANIZING A RELATIONAL DATA BASE

PROVIDING INFORMATION ON TIIE STATE OF DEVELOPMENT

OFLARGE PROGRAMMING SYSTEMS

N. N. Bezrukov
UDC 51:68|.3.06.

A method is proposed of entering information on the state of a project develop:

ment into the user field of the table of contents of text libraries. The method
was developed for the Unified Computer System operating system. Application of
the operations of relational algebra to such a table of contents can provide
quite comprehensive information as to the state of the project. The query lan-

guage used for this purpose and the possibilities of service programs are de-

scribed.

The use of software development tool systems has now become the principal method of in-

creasing programming productivity and improving the quality of software reliability [|, 2].

It is not by coincidence that a powerful set of support tools is being developed in parallel

with the development of an ADA translator [3].

It is well known that one of the main difficulties encountered in the design of large-

scale systems is the organization of communication between individual designers. As ,noted by
Brooks "... noncoordination with graphs, functional incompatibilities, and system errors are
caused by the fact tha~ the left hand does not know what the right hand does" [4, p. 6|]. An

important demand of the tools used in such project is that they be capable of recording infor-
~mation on the executed operations .in a special data base, .keeping tra.ck of the .state of de-
¯ velopment (see, e.g., [5, chapter 19]). The availability of a data base (DB) and a proper
query language increases the awareness of individual designers of changes taking place in the

system that concern their special interests. It is important, for example, to be able to get

answers to queries such as:

What modules have been changed in library A since May- |0?

Translated from Programmirovanie, No. 2, pp. 44-53, March-April, |985. Original article

submitted December 2, ;983.

036 ~-7688/85/~ |02-009309.50
© 1986 Plenum Publishing Corporation

93

Which modules have been developed by programmer X?

When was module M lastly modified and by whom?

What is the difference betweell the latest version of module M a,d the former one?

The terminology used for th~s ~.lass of software tools is still not settled The term

most frequently used in foreign literature is program~i~g e,v;.ro~,ent. I, [61 this ter,1 was

translated "progra~ning surroundings" and the abbreviation IPDF (integral program develop-
ment facilities) has bee~ proposed instead. Irrespective of which term will be generally
accepted in the future, it is clear that powerful software tool systems founded on a special

¯ i become accessible to many programmers.
data base w~l

. ¯ ase on the state of system development can be organized
In the meanwhile, a s~mple data b. = --~;ch achieves the above aim (for the¯ ¯

. escrlDe a me~,uu ~ . . ¯
in a rather ~mprov~sed way. Here.we.~ ~ ~_ ~ o~ out one man-year by combining ~nto a
Unified System (US) operating system) a~ ~ u~ ~ ab
single software tool system already existing service programs after some local modification.

The main concept is to build in a relational data base [7] into the table of contents of

every .text library containing programs, documentation, or test data concerning the program

product being developed. The table of contents is regarded as a relation containing informa-
tion on the state of development of sections included in the library. Interpreting the table
of contentS of a library as a relation reflects the fact that the table of contents is physi-

cally a separate file whose entries are arranged in a lexicographically ascending order of
section names. As is well known, the simplest implementation of relational data processing

(see, e.g., [8-I0]) is based on conventional sequential or index-sequential arrays.
Information on the state of development will be located in the user field of each item

of the table of contents. This field (up to 62 bytes in size) is filled in the US operating
system only for the loading module library. In text libraries the field can contain any in-

formation.
Structure of Section Tickets. The proposed user field structure (called the section

ticket) reflects the experience of the author in the design and application of the NEAT soft-

ware tool system [ll]. The ticket includes the following nine components:

I PASSWORD

2 A CHAR(12),/* AUTHOR -- author’s code*/

2 B CHAR(3),/*BIRTHDAY- date of creation (YYMMDD)*/

2 C CHAR(5),/*CORRECTED -- date of correction */

2 D BIN FIXED,/ * DIMENSION -- number of lines */

2 E BIN FIXED,/ * EDITION- number of version */

2 F BIT(32),/ * FILTER- modification filter */

2 G(5) CHAR(3),/ * GENERATIONS -- generation stack */

2 H CHAR(1),/ * HOsT-LANGUAGE- programming language */

2 I CHAR(18);/ * INFORMATION- desi’gner’s information */

As seen in the ticket structure, key words denoting fields have been selected in an

alphabetic order (A- I). The field A always contains in the first four bytes the word NEAT

which acts as an indicator of the described ticket format. The user has no access to these
four bytes. The user can enter his code into the remaining eight bytes to facilitate the

’ identification of the section "owner," thus providing some protection of the section text from

unauthorized access.
The section creation date is recorded in field B as a packed unsigned decimal number

(YYMMDD). The field C contains the correction data and the correction time (HHMM) in the
first three and last two bytes respectively.

The number of lines in a section is recorded in field D and the serial number of the

version, in field E. When the section is created, a one is entered into this field. Each
next correction increments this number by one. Field F contains a filter whose purpose is

to determine groups of designers who must be informed about modifications introduced into the

given module. ~

94

The stack of disk add’resses (in TTR format) of the last five versions is stored in field
G. If the library was not compacted, the NEATED editor [12] makes it possible to read out
any of these versions and so to recover the text of a section accidentally covered with other
text. The field H contains a single-character code of the programming language (any language,
X; PL/;, P; FORTRAN, F; Assembler, A) in which a given module is written. Finally, field I
contains automatically entered information located between brackets in the first line of the
sect’ion text, for example:

/* [generation of table of contents] */ .~I

C [calculation of trajectory]

* [minidisk driver]

Besides the components A through I, the following three "system defined" fields are also
assumed to be specified: N (section name), T (TTR field), and M (section text).

The section ticket allows a completely new approach to the problem of access to informa-
tion contained in one or more libraries. The now prevailing method of specifying a group of
sections by listing their names can be replaced by defining a group of sections through con-
ditions contained in the ticket data (e.g., by specifying the value of a certain field of the
ticket) .

The above aims can be achieved quite naturally by allowing certain operations of rela-

tional algebra (see, e.g., [6]) in the query language. Unfortunately, the comprehension of
the concepts on which relational algebra is based is hampered by the terminology used in this
field. To facilitate comprehension, we shall not use the "relational jargon" with its rela-

tions, domains, corteges, and other attributes.

Relational Operations on Tables of Contents....: The principal operations traditionally
assoclat~d wi~h relational algebra are simi. lar to the well-known set-.theoretical operations

but operate not on sets but on rectangular tables (relations). We shall consider only the
f011owing five operations: sampling (restriction operation in relational, algebra), union,

intersection, complementing, and difference.

The operation of sampling from a table of contents produces a new table of content’s con-
taining a subset of sections whose tickets satisfy the specified sampling predicate. For
examPle, the request PROCLIB : B > 830101 makes it possible to select all items created after
Jan. I, 1983. The character ":" is used here as a symbol of unary operation and PROCLIB is

the name of the corresponding DD map. The sampling predicate can be formed out of any number
of comparisons with the connectives "&" (AND), "!" (OR) and "-]" (NOT) and allows the use of
parentheses. An example of a more complicated request is

PROCLIB : A = ’Petrov’ & C > 830101,

which specifies all sections created or corrected by progranm~er Petrov after Jan. I, 1983.
The operation of taking a subline ".." and indexing is allowed in the fields A,.F, I, and N.
For example, the request

PROCLIB : N[I..4] = ’NEAT’

selects from the table of contents all sections whose names begin with "NEAT."

Union, intersection, and difference are binary operations and produce a combined table
0f~contents out of two starting ones. The union operation "+" of two tables of contents pro-
duces a table of contents containing all sections entering into the two original ones except
duplicates in the second table. For example, the request

WORK + ARCHIVE

specifies information on the common part of the libraries WORK and ARCHIVE.

The intersection "/" produces a table of contents including all sections of the first

table which are also included in the second table. For example, the request

WORK / ARCHIVE

makes it possible to find what sections of WORK are also stored in ARCHIVE. If one wants to
check the identity not only of the name but also of certain other items of a ticket, the list
of items should be given in special brackets"/[" and "]/"between the library names, for example,

95

WORK /[A, B, C~/ ARCH!VE.

A group of consecutive ticket items can be indicated by the symbol "..", i.e., A, B, C

is equivalent [~o A..C. Considerln~ th~s, the precedi~ng request can be written as

WORK /[A..C]/ ARCHIVE.

The difference operation "--" produces a table of contents which includes all items of
the first table for which there are no corresponding items in the second table. For example,

the request WORK-ARCHIVE indicates what sections of WORK are not stored in the library called
ARCHIVE. Any ticket items which must be included in the comparison must be indicated in
separating brackets "--[" and "]--". For example, the request WORK --[A..I]~- ARCHIVE makes it

possible to find what sections of WORK are not found in ARCHIVE or have incompatible tickets.

The described operations can be combined as in conventional algebraic operations thus
producing quite intricate requests. In practice most requests consist in sampling operations.

Binary operations are only used infrequently.ASSISTENT. The above operations make it possible to implement a service program for

executing extensive operations on groups of sections. ’[~is program ~s named ASS~STENT.

The ASSISTENT operation must be controlled with the aid of a special language. Below
we describe a query language NEATFACE developed for the NEAT software tool system and consis-
ting of four types of operators: LET, MARK, RUN, and PUT. The syntax of these operators can

be described in BNF as follows:

< operator LET> ::=LET’<name of copy,>"=" lexpression>
.

<operator MARK> ::= MARK <name of field> "=" <literal> FOR~expression~>

<,operator RUN> ::= RUN <sample of START co~mnand> FOR <expression>

<operator PUT> ::= PUT <sample of section separator> FOR <expression>.

The LET operator creates a new table of contentS by computing an expression consisting
of the table of contents operators described above. For example,

LET TEMP = (WORK-ARCHIVF..) : N[~..4] = ’NEAT’ & H = ’P’.

The resulting table of contents acts~ as a "copy," i.e., is an independent sequential

file (or library section) organized in the same way as the table of contents of conventional
libraries of the US operating system (256-byte blocks with packed entries of variable length).
It can be thus used in subsequent operations in the same way as regular tables of contents of

libraries. ,

The MARK operator is used°to correct the values of ticket fields for a given group of
sections. All fields are treated as byte fields except the F field. The F field is assumed

to be a bit field and the respective literal must be composed of ones and zeros only. The
"*" symbol can be used as a literal and denotes that the former value of the given byte (bit)

is to be preserved. The following are several examples.

MARK H = ’A’ FOR PROCLIB : N[I..3]= ’ASM’

MARK F[9..16]=’**I**I00’

FOR PROCLIB : C > 830501 & H= ’A’ .

The symbol "*" in a literal denotes that the corresponding bit of field F is to remain un-

changed.

The RUN operator is used to start a given procedure for the group of sections specified

by the expression. For example, if the library SYSI.PROCLIB contains the procedure PCG with

two parameters L (library name) and M (section name), the operator

RUN ’ PCG L="NEAT .TEXTLIB" ,M= ’ ,N

FOR TEXTLIB : C > 830501 & A=’IVANOV’
’

will start this procedure for all sections in library NEAT TEXTLIB corrected after May I,

1983 and belonging to programmer Ivanov.

96

The PUT operator forms a sequential file out of all sections selected from a library
isolating them from each other by a separator produced from a specimen indicated in the com-
mand, for example

PUT ’,PROCESS(SIZE = 999999,ST,NT,A,X,N = ’,N,’) ;’,M

FOR TEXTLIB : H = ’P’ & C > 830501

PUT ’SI~CTION’,N,’TTR = ’,T,’AUTIIOR: ’,A,M

FOR TEXTLIB : H = ’P’ & D > 256.

Informing Designers about Module Cha.nges. Modifications of system modules can affect
the performance of other modules being developed by other designers. Moreover, a programmer
working on a given module may be unaware of all its applications and be unable to ensure re-
editing all programs using this module.

To facilitate providing information on changes introduced in modules to designers we use
¯ the so-called "sphere of interest" method: the bits of field F are reserved for individual
designers (or groups of designers). If a given module lies within the "sphere of interest"
of a certain designer the respective bit in field F is set to one. A list of modules whose
modifications concern a given designer can then be set up by simple sampling, for example

PUT ’SECTION TEXT MODIFIED’ N ’AUTHOR:’ A, ’DATA’, , , ,

C FOR TEXTLIB : C > 830501 & F[4] =’l’

(the 4-th bit of field F is assumed to be reserved for the given designer). Such automatic
restriction of the flow of information concerning modifications is very useful in large’pro-
jects in which tile size of text libraries very much exceeds the capability of an’ individual
designer to analyze it.

’l’l~e field I,’ can l)e corrected using the operation blARK described above. In addition,
using tags it is possible temporarily to mark sections in which errors have been detected.
Free bits of field F can be used for this purpo, se.

New Possibilities of Text Editor. The use of section tickets offers several new p.ossi-
bilities for the text editor. The most important of these are: provision of access to
"archival" versions of a given section through the use of a stack of disk addresses (field
g) of the former section generations, protection of section texts from unauthorized access,
automatic consideration of the properties of edited text in the course of its correction.

The most practically valuable property is undoubtly the possibility of access to pre-
ceding generations of a given section. This makes i.t possible to avoid various minor but
painful "mierodisasters" when carelessness or unfavorable coincidence cause the destruction
of a section whose text has been considerably changed since the time it was recorded on tape.
Experie~ce shows that programmers quickly master this facility and use it not only when a
section text is destroyed but also to recover the original version of a module after the in-
troduced modifications prove to be a failure.

Field A offers an opportunity to organize simple protection of the section text from un-
authorized access: a new version can be recorded only by users whose code is identical with
the contents of field A of the given section. This protection does not extend to sections
whose ticket has blanks in field A: such sections are assumed to be accessible to all.

At present, both the creation and correction of program texts are executed with the aid

of a display, frequently without a listing of the program version being corrected. The pro-
gramming language code in field H provides an opportunity for automatic formatting of the
corrected text while the editor is entered into the buffer allowing selective display of
lines in accordance with the specified level of nesting. This facility is now implemented
for the NEATED editor [12] making it possible to display a kind of "sunnnary" containing only
the headings and terminations of loops, procedures, etc., thus facilitating the detection and
correction of a given class of errors. In principle, automatic determination of the program-
ming language of the text being corrected makes it possible to consider the syntax in context
search and replacement and also in certain editor commands (e.g., exchange of a group of
lines), which is a step towards syntax-oriented editing of program texts [1, 2].

Implementa. g.ion: Automatic writing into the user field in the design and correction of
library sections requires modification of the text editor employed. The section ticket is

97

organized so that most of its fields can be filled out directly by the module that controls
recording of a section in the library. The first step is thus modification of this module
if the editor includes it. This method has been used in modifying the NEATED editor, and the

NEABI’AM record[t~-’~ modul~’ i,cl,,dpd i~ ~t ca,~ serw" as an example.

If the employed editor has no special module [or record[.~$ l)~ogr;]m sect~o~,s i. tl,e
library one can modify the macrocou~ands WRITE and STOW, callin~ auxiliary subroutines that
generate the proper SVC. In the case of the WRITE macrocommand the subroutine must first
analyze the first line of the text in order to find the value of field I. In the next calls
the subroutine should increment the record counter by the number of logical entries in the

block considering that the last block can be shortened. The counter can be stored in the 2-

byte DCB field. The subroutine for the STOW macroco~and should generate a BLDL SVC to read

the old value of TTR and the user field and then correct the ticket.

Imple~nting entry into the fields A, F, and H of the ticket requires more complicated
editor modification and can be executed as a second step. Since most frequently used editors

require indication of the user’s name at start of the editing session, this information can
be used for fi.lli,g out field A. Fields F and H can be filled out by entering additional
parameters into the instruction for writing the edited text i.,to the sectio.. A.other ver-

sion is to treat the section ticket as a line with number 0 which cannot be deleted or trans-
posed but to which all correction co~nds can be applied.

To ensure access to previous generations of a section it is necessary not only to modify

the module that generates the FIND macroco~and but also to expand the syntax of certain in-
structions. For the NEATED editor, for example, the syntax

< co,and code>"("<na~ of section>")"

has been changed to.

<co~nd code > ".(" < name of section.> ["--" < nu~er of generations .>]")

For example, the co~nd A(~2) reads the second generation of the ~ sections,

i.e., the text of the section as it was before the last two corrections, into the editor
buffer. ’

To convert the existing text libraries (or rather to modify their tables of contents) we

have developed the NEATFORM utility which converts the user field of each section into a
specified format. In addition, several other utilities have been developed for generating
record of the table of contents of a library and decoding the section tickets, for printing

out the library contents taking into account archival versions of sections, etc. A special

’operating mode of the NEATFO~ utility is foreseen for clearing the G fields of each library

section after compaction.The ASSISTENT program is implemented with the aid of methods used in RYaOD and REGENT
translators [8-10]. Unlike the latter, the program is an interpreter in which to each opera-

.
tor corresponds its own interpreting program. S~n~e requests are associated with the
execution of sampling operations, the class of admzss predicates has been made expandable,

allowing the user to define his own logical functions on the ticket elements. The user can,
for example, write a PL/I .program which can determine if string X is contained in string Y

IS IN: PROC(X,Y) RETURNS(BIT) ;

DCL (X,Y) CHAR(*) ~

RETURN (INDEX(X,Y) > O) ;

END IS_IN ;

This program should be translated and placed in the library of loading modules of the

NEAT system. Then, to select from the PROCLIB library all sections whose field I contains

the word "LENTA" one can use the expression .

PROCLIB : IS_IN(I,’ LENTA’)

~Operating Experience. The described program facilities are used at the KNIGA computing
center from the middle of-1983. Besides being used in software development, the facilities
have been successfully applied in practical education of students. It should be noted that

the problems involved in student education at major universities are in a certain measure
similar to problems encountered in the organization of large-scale programming system develop-

ment. In particular, characteristic features of practical work of students are: persistent

98

lagging behind schedule, ~Ineven use of computing capabilities (overloading at the end of a
semester), and a large number of simultaneously debugged programs.

As is well known, simultaneous debugging of a program by a group of ten or more persons

.
working with termina.ls connected to medium-power computers (ES 1022, 1033, 1040) drastically
increases waiting t~me, whicll can exceed I0 miz~ cvez~ if each of the debugged programs consists
of not mo~-c tl~a~ [e, S~ml~Ic ol~et-atot.s. ’l’l~is is associated with considerable loss of t~me on
job planning and loadi~g the various phases of the US operating system translators and linkage
editor, as a result of which a pro.gram of the form

A: PROC OPTIONS(MAIN) ; I=l ; PUT DATA (I) ; END A;
takes more than a minute to be

translated and executed by an F translator with a resident
operating system of the order

of 200 K; the same program is processed by a debugging trans-
lator operating in the RUN mode in 30-40 sec (the section length being 120 K). In batch pro-
cessing the translation speed can be increased by one-two orders of magnitude depending-on

the number of simultaneously processed programs. For example, a batch of 50 jobs of the
given type is translated and executed by the debugging translator in 2-3 pin (for the same
section length).

It is thus possible significantly to increase the processing speed of a large number of
similar jobs of the "tra~slate-edit--compute,,, "translate-edit~," "edit-execute," etc., type by
analyzing the tables of contents of active text libraries an~ arranging batches for transla-
tion (editing) out of sections that have been modified up to this time and have appropriate
tickets (fields I! and, possibly, I). As a condition of including a section into such a batch
one can use the correction time or, if "on the spot" updating is not used, the fact that the
value of field T (TTR) exceeds a specified value (in conventional, correction the library
method of US operating system access transfers the section to the end of the library).

In the last case, the same method can be used for libraries that have no section tickets
of the required format provided the library contains sections in a single programming lan-

guage or the programming language can be found from the module name. The use of the ASSISTENT
program for batch forming is not efficient since the operating speed and memory capacity are
in this case much more important than the variety of executed functions.

0 .The author has developed two service programs that efficiently solve the above problem.
The NEATMAX program in a single call inspects the table of contents of a given library and
writes into this library a section with a special name (e.g., E~ MAX) having a single line
0nly whose positions 73 through 80 contain the maximum value of the TTR field of the given ’
library. Positions 1 through 72 of this line’store a copy of the contents of the PARM field

transfered to the NEATMAX program during the call.
This field can subsequently be used as aseparator of the batch elements.

, .After being called, theNEATRUN program inspects the table of contents of one or several
libraries, including into the batch all sections for which the TTR field exceeds the value
contained in the ~ MAX section. If positions 1 through 72 of the single line of this section
are not empty, the line is used as batch element separator. The symbol % of this line is then
replaced with the name of the respective section. For PL/I this line usually contains the
*PROCESS map. At the end of inspection the NEATRUN program "on the spot" corrects the 1]MAX
section, writing the new maximum TTR value for the given library in the 73-80 field. This
en.sures contxnuous formation of a batch of jobs of the same type corrected up to the present

time (since the preceding activation of NEATRUN).

The use of the above programs made it possible to relieve overloads taking place at the
computing center at the end of eoa~ha~e~e~ntert~end .to improve the center’s efficiency. The

programs confirm the advantages P Y g theory and methods of relational data bases
in the development of service programs oriented on batch processing. A batch can consist not
only of library sections but also of other structural units (entire libraries, files, or

volumes) .

Since the middle 1970s the design of software development tools using an integrated data .
base concerning the state of development of a project is given the same attention as the de-

velopment of programming languages and translators in the early 1960s. The systems developed
in the last decase can be divided into three groups depending on their capabillties and com-
plexity [13-19].

99

The first group includes the most simple systems whose implementation requires several
man-years. A data base on this level can be considered as lying half-way between the pro-

grammer and his tools, making it possible for him to fix a specified class of events out of
all the events taking place in the system. An important advantage of such systems is their
simplicity thanks to which tlley can be easily adapted to specific co~td~tions. Moreover, such
systems can be implemented by a single designer as proved in the present paper.

In systems belonging to the second group the data base has a more complicated structure
and makes it possible to solve more complex problems [14-16]. The latter includes the prob-
lem of synchronizing of the source and object versions of library texts, automatic management
of archives on tape, and verification of certain types of linkages between modules. An
example of a modern system of such a level is the SDS system [14] operating under the control
of the UNIX operating system and consisting of four main subsystems: processing of modifica-
tion requests, control of program source texts, control of linkage compilation and edition,
and verification control. The implementation of a commercial specimen of such a system takes
several tens of man-years.

The third group has the most powerful data bases including information on relations be-
tween objects and events taking place in the system. While the first two groups are oriented
on programming and debugging stages the last group is an attempt to cover the entire lifeeyele
of the product being developed [18, 19].

Such a data base is capable of providing answers to quite complex queries involving
classification and Selection of objects based on their properties, for example:

What modules are affected by modification of the structure of table T?

How many errors has programmer 15 made in module M?

By whom and when was the subsystem C tested?

Since the data base stores information both on all modules being developed and on all
¯

programmers, certain functions concerning passing information about specific events to all
designers can be carried out automatically. For example, all programmers using module M can

¯ be automatically notified that an error has been found in the module and later that the error

has been rectified.

Systems of this kind require hundreds of man-years to be fully developed and still are

at an experimental stage [.18, 19]. Nevertheless, it is even now obvious that a significant
part of a programmer’s daily work in translating, editing, and testing programs can be auto-
mated. Such systems can be regarded as some king of an "intelectual robot" serving the pro-
grammer which according to his instructions can carry out quite complex manipulations on the

texts of interrelated programe and data [19].

The existence of several levels of software development tools does not mean that one

level can completely di~splace others even if it obvious that the more complex tools will
gradually gain advantage. This is in a certain measure similar to the situation existing in
the field of programming languages where languages of the Assembler, FORTRAN, and PL/I levels

successfully coexist side by side.

LITERATURE CITED

I. A. I. Wasserman and S. Guts, "The future of programming," Commun. ACM,__25, No. 3, 196

(1982). .
2. W.E. Howden, "Contemporary software development environments," Commun. ACM, 25, No. 5,

318 (1982).
3. Advanced Research Projects Agency, Requirement for ADA programming support environments

("Stoneman"), U.S. Department of Defense, Arlington, VA (1980).
4. F. Brooks, How to Design and Create Programming Systems [Russian translation], Nauka,

Moscow (1979).

5. H. Mayers, Software Reliability [Russian translation], Mir, Moscow (1980).

6. A.P. Ershov, "Integral approach to current software problems," Kibernetika, No. 3, I~

(1983).

7. C. Deight, Introduction to Data Base Systems [Russian translation], Nauka, Moscow (1980).

8. ¯ A. A. Stognii, E. L. Yushchenko, V. I. Voitko, E. I. Mashbits, L. V. Vernik, and N. N.
Bezrukov, "Man--machine data processing system oriented on nonprofessional users," in:

Algorithms and Organization of the Solutions of Economical Problems [in Russian], Issue

14, Statistika, Moscow (1980), pp. 172-195.

i00

9. N. N. Bezrukov, "Main-line optimization facilities in the REGENT relational report
generator," Upr. Sistemy Mashiny, No. 6, 74 (1980).

10. N.N. Bezrukov, "Translation to a high-level language as a method of implementing
problem-oriented languages based on relational algebra," Author’s Abstract of Candi-
date’s Dissertation, Kiev (1981).

!1. N. N. Bezrukov, "Software development tools for PL/i programmers," in: System Program-
ruing [in Russian], Kishinev State Univ., pp. 92-95.

12. N. N. Bezrukov, "Text editor with an extended system of commands’ for the US operating
system," Programmirovanie, No. 3, 39 (1981).

13. B. W. Boehm, R. K. MeClean, and D. B. Urfig, "Some experience with automated aids to
the design of large-scale reliable software," IEEE Trans.Soft Eng., SE-I, No 1, 125(1975). " ¯

14 P White and M R. Feay, ,,¯ ¯ ¯ "A software development system for reliable applications,
IEEE Trans. Commun., 30, No 6, 1363 (1982).

15. J. K. Cottrel and D. ~ Workman, "GRASP: an interactive environment for software
development and maintenance," Data Base, II, No. 3, 584 (1980).

16. M. J. Rochking, "The source code control system " IEEE Trans Soft Eng., SE-I, No 4

364 (1975). ’ " " ¯ ,
17. W. E. Riddle and R. E. Fairley, Software Development Tools, Springer-Verlag (1980).
18. H. Bratman, "The software factory," Computer, 8, No. 5, 28 (1975).
19. T. Winograd, "Breaking the complexity barrier ~gain " SIGPLAN Not I0 No I 13

(1975). ’ "’ --’ ¯ ,
,

i01

