
COMPUTER SOFTWARE
A translation of Pro~rammirovanie

May, !984

Volume 9, Number 4
.luly-August, 1983

CONTENTS

Engl./Russ.

PROGRAMMING THEORY
Parallel Algorithms - N. A. Krinitskii ’

,

PROGRAMMING METHODS
Debugging Tools for a System with Automatic Program Synthesis

- M. B. Matskin
Synthesis of Network Structure Design Programs - P. B. Kikot’

PROGRAMMING SOFTWARE AND SYSTEM PROGRAMMING
Syntax-Directed Programming of Data Input and Checking

-- N. N. Bezrukov
One Approach to the Specification and Verification of Translators

- V. A o Nepomyashchii and A. A. Sulimov
Polyar, a Parallel Asynchronous Programming Language

-T. I. Lel’chuk and A. G. Marchuk

PROGRAM SOFTWARE AUTOMATIC CONTROL SYSTEMS
Mini- and Microcomputer Information Systems -- R. A. Karaseva

and N. A. KrinitskiJ
Compiler Generator for Knowledge Representation Languages

- I. L. Artem’eva, S. B. Gorbachev, A. S. Kleshchev,

A. Ya. Lifshits, S. I. Orlov, L. D. Orlova,
and T. G. Uvarova ¯

167 9

173 21
178 27

185 38

195

203 59

211

217

69

78

The Russian press date (podpisano k pechati) of this issue was 7/9/1983.
Publication therefore did not occur prior to this date, but must be assumed
to have taken place reasonably soon thereafter.

PROGRAMMING SOFTWARE AND SYSTEM PROGRAMMING

SYNTAX-DIRECTED PROGRAMMING OF DATA INPUT AND CHECKING

N. N. Bezrukov
UDC 51:681.3.06

The article considers the design of data input and checking programs (DI~P) based
on the single-pass compiler scheme. A number of standard DICP blocks coded in

PL/I are described. The method supports automatic correction of errors of certain

types, shorthand coding of. repeating groups of attributes, and availability of com-

ments in the input data. It is especially useful fo~ the design of interactive
DICP’s.

The programming of data input and checking is the most labor-consuming part in data pro"
cessing jobs. A data input program generator (DIPG) [i] is intended to simplify this task.
However, the DIPG is designed for fairly simple (hierarchic or homogeneous) data structures,
restricts the output format, and provides insufficiently informative diagnostic messages in

case of errors in the input data. Since the DIPG generates an Assembler input program, while

the data processing programs are usually coded in a high-level language, a programmer attempt-
ing to use the I)IPG must have proficiency in two languages. At the same time, the programming
of data input and checking in a high-level language is a sufficiently complicated problem in

itself.

The design of data input and checking programs (DICP) is usually considered as an area
unrelated to the design of programming language compilers. Yet both subject areas have much

in common. The source da[a may be considered as a program written in some formal language.
The syntax of this language may be described using an appropriate syntactic metalanguage (e.g.,

BNF). Therefore, a data input and checking program may be treated as a simple compiler, and
thus created using all the algorithms and methods available in the highly developed area of

compiler design [2].

In what follows we consider DICP design following the scheme traditionally used for sin-

gle-pass compilers: a parser drives a lexic analyzer an@ a block which performs semantic
checking and ge[~erates the output file. The proposed method will generate fairly quickly and

~asily a DICP in a high-level language, capable of processing not only hierarchic and homo-
geneous data ~tructures, but also more complex structures and providing detailed error diag-
nostics (much more in~oFmative than those in DIPG). The output file may have arbitrary struc-

ture. For brevity, we will ~@~ignate the DICP designed by this method a syntax-directed DICP

(SDDICP).

Advisability of Using Lexic Data Types

The most common carrier of data until quite recently was punched paper tape. Data were

punched on paper tape with explicit field and record separators, as follows:

PUSHKIN A.S.:RUSSIAN:I799:I837 =

LERMONTOV M.Yu.:RUSSIAN:I814:I841 = "

In this format, the data are without lexic types, or more precisely al~ the data are of

the same lexic type. Therefore this format prevents the use of syntax-directed data input and
checking methods, in the same way that the~truc~ture of Fortran prevents the use of syntax-

directed translationmethods-

The recent tendency toward increasing use of interactive data entry methods provides an

opportunity for a change of format. The Separ~[ors displayed on the terminal screen only
increase the intrinsically heavy vlsual Ioad on [~e operators (who anyhow complain of eye

fatigue) and make it more difficult to man~puiate e,~racter insert and delete instructions
(as no blanks are allowed in. the middle of d~ta,, all. g~e following symbols must be shifte~

__

Translated from Programmirovan’ie’, No. 4,. pp., 38-50, J~ly-August, 1983. Original article

s~lSmttted .Jan,~ry 14, 1.982.

0361-7688/83/0904-0185507.50 © 1984 PY~um:Publis~in$ Corporation 185

ri’ght or left), l.t is the~:efore ildvisable to use l)].a~ks as separators and to enter the data
in free-field format, i.e., allowing the data elements to be separated by an arbitrary number

of blanks. The free-field format essentially
_[mp roves ~’c~ld:lb [.L [ty.

The use of blanks as separators necessitates the introduction of lexic data types (iden-

tifiers, characters, numbers, separators, etc.)~ as in all programming langu~qges. The bene-
fits of defining distinct lexic data types were already recognized by the creators of PL/I:
list directed and data directed input assume certain le×ic types such as identifiers (variable

names in data directed input), characters (values of string variables), and numbers. Unfor-
tunately, the control of such input types (by means of CONVERSION conditions) is insuffici t-

ly flexible. Nevertheless, these two types o.f data organization are very convenient and are
widely used by PL/ 1 programmers.

L_exic Analysis of Data

The key aspect of the proposed method is the separation
r(’l~l.acr~’m~’.t; ~[~ll~-~,~,[~l~t~ l~l~tt~ I~y i~l)~t_ wl[l~ ~ spc~’lal I.~,xlc
The sepa~-atlon of the lexic data level is conceptually similar to the separation of the lexic

level in programming languages: the problem is divided into two conceptual levels, and each
can be analyzed and progra~ed independently.

During a single access, the scanner isolates a single lexic unit (a lexeme) ~n the source

text and enters the corresponding code (so-called type) in a syntax stack, while the text of
the lexeme is entered in a parallel semantic stack. Five lexeme types are usually sufficient
for source d~ta processing: these are integers (type 9), re~l numbers (type R), literals

character strings of the form ’[.o~]mboZ}’ (type X), identifiers (type A), and separators (+,
--, =, etc.) for which the type coincides with the particular separator symbol. There should

also be a class of symbols i~9ored by the lexic analyzer (such as the blank and the comma).

Thus, in lexic analysis of the record

’PUSHKIN A.S.’, ’EUGENE ONEGIN’, BVL, 75, 2.34; the first call to the scanner will push
X into the syntax stack and PUSHKIN A.S. into the semantic stack, while the second call will
push the pair (X, EUGENE ONEGIN). This will be followed in succession by the p~irs (A BVL)

(9, 75), (R, 2.34) and, Finally (; , ;). ’ ’

Note that after the input of this line, the syntax stack will Oontain the string XXA9R;,
which for homogeneous records may be treated a~ a ~o~o skeleton of the record (the input

of any record of the same structure will generate in the stack a s~2~o~{o ~mp~ identic~
to the template).

The lexic analysis algorithms presented in [2-7] are virtually i~depende~t 0[the
puter instruction set. At the same time~ the specific ~.e_~thres ~[the i~st~d;c~ion se~t

computers (which support the instructions TR and TR%) make it po~s[~’le ’to ~m~p%.e’~hent ~simp.l.e
efficient lexis analysis algorithms. The algorithm descrlbe<~ below si.mp{i:[ies vocabul~,_~ry
ification, and the lexis analyzers based on this algorithms ~.e easy ’~to @eHug. ~Phe algoPithm
has been in use for several years now and the accumulate@ experience recommends it as one of

the most conven.ient methods of lexic analysis for PLiI

The ~igorithm used by any lexic analyzer sho~]..d be able to c[as’sify tl~e liter~is into
different claases, such as digits, letters, separators, ignored symbols, etc. The classical
method uses. for this purpose the so-called oZass{.~{~ ~o~o~ [2, 6]. In this method, the bit

combination corresponding to each literal is i-re, ted as a binary number, and this number con-
stitutes an index under which the classifier stores the information needed to assign the giv-
en literal to a particular class (or cl~sses). There are two basic methods of encoding this

information [2, 3].

The first met|~od encodes each class b~ a bit string, which in the simplest case contains
ones in places corresponding to the classes which include the given literal [3]. Then a bit
mask can be constructed for each class, zo that application of logical AND to the classifier
element and the mask of t~e corresponding class performs unique classification. In the sim-

ples~ case the mask may contain a sin~,[e one, which ~s the bit used to encode membership in
the given class. For instance, if the class of digits is coded as ’I00000()0’B, and the class
of letters as ’OIO00000’B, the check C(B) & ’I’B will verify whether the symbol with the code
B is a digit; similarly the check C(K) & ’01’B will verify whether the symbol with the code K

186

ate
~ber

is a letter; the check C(K) & ’II’B will verify membership in the ~.]ass of alphanumeric char
acters. This method is highly convenient also for complex lexic s ~.~ eWhen one -
character is simultaneously assigned to several classes. Its short~orn~ur~’t~

thatganal z h mask can-~et be used as an index for jumping to the lexic .analyzer fragment y es lexemes ofcorresponding type.

The second method encodes each class by an integer. This integer, called the class
weight, is also used as an index for jumping to the label of the lexic analyzer fragment that
analyzes the given lexeme. The restriction of this method is that each character should be-
long only to a single class (more precisely, each lexeme should start with a distinct class
of character) which is not always feasible. For example, if the numbers are entered in hex-

adecimal form, the class of digits includes the symbols A-F, i.e., it has a nonempty inter-
section with the class of letters.

Rapid "symbol-to-class" conversion on the ES computer can be implemented using the in-
struction TR. To this end, in addition to the given source string, a so-called discrimina-
tor string should be created. Each byte in tile discriminator represents the class of the
character occupying the corresponding position in the input line. A schematic realization
of this method .is presented in Fig. I. llere and in what follows we use a version of PL/I
corresponding to the optimizing PL/I compiler under OS/ES which is essentially superior to
the level F compiler judged by all the basic parameters. The discriminator D is created by
applying the function TRANSLATE to the source string. Note that the operator D = TRANSLATE-
(CARD, C) Js transl~ated by tl~e optimizing compiler into the instructions MVC D, CARD and TR
D, C.

As we see from Fig. i, the jump to the lexic analyzer fragment analyzing lexemes of a
given type is organized in the form of sequential search snd not by means of a switch. This
is so beca,~se ~or e~cll il~dexed label tile PI, compil.e~- includes an n~ditional initialization

instruction in the procedure prologue, thus virtually equating the efficiency of one access
to a switch during a single procedure call to that of sequential search. If the classes are

ordered by descending frequencies of occurrence of the corresponding lexeme types in the text,
the sequential search is actually preferable.

As we know, lexic analysis usually takes up about 2/3 of the total compiling time in
single-pass compilers. It is therefore desirable to increase the lexic analyzer efficiency as
far as possible in order to allow more highly structured (and~ therefore less efficient) cod-

ing of DICP. Two special techniques can be applied in this context which, although not en-

tirely original, nevertheless do not occur in the literature on lexic analyzers [2-7] exam-
ined by the author.

First, checking for end of line (which must be performed for each compound lexeme) has
been reduced to checking for the end of a given lexeme (i.e., has been virtually eliminated).

This is accomplished by increasing the discriminator length by one symbol (compared with the

length of tl~e string being analyzed). This last discriminator symbol is a special character
(in Fig. 1 this is the character "7"), which is treated as the class of the special lexeme

"end-of-line." The processing of this lexeme reduces to entering a new line. Thus, instead
Of the usual subprogram to read the next line which lexic analyzers call from several differ-
ent points, we introduce an additional branch in the CASE operator identifying the type of

the current lexeme. ’

By assigning the class 7 to any character (e.g., the character "?" ~n F;g. 1), we can

~ncl~de commc~ts in the source data. The importance of this option is that it allows easy
and reliable identification of batches of punched cards, paper tape rolls, and particularly
magnetic carriers (magnetic tapes and diskettes). Moreover, it becomes possible to include
special comments intended to facilitate the operator’s job, such as:

? EXPERIMENTAL DATA 15.03.82.

PROCESS BY PROGRAM FACTOR
7 12 15 24 36 ? IVANOV A.V.
4, 48 i0 30 18 ? PETROV S. N.

Second, the classes are arranged so as to optimize the header of the identifier extract-
ing loop DO WHILE(D(K) = LETTER ! D(K) = DIGIT); (here LETTER and DIGIT are the characters

representing the classes of letters and digits, respectively). If the cl~ss of digits is

coded by the character "[" and the class of letters by tile chnrncter "2 " , assigning the char-

187

LEXAN: PROC;

DCL((WORD, EXWORD) CHAR(255) VAR (TYPE, EXTYPE) CHAR(i)),
EXT, ’
(C CHAR(256)/* CLASSIFIER " */ INITi
’33~’33333333333333333333
3333333444444433333333342444444333333334362473333333333422544333333
3323222322422222222
2222323422222222233223343222222223223221 i I i i i i I 11222223’),
(EOF INIT (0), FROM,.N INIT(i), TOTAL, LEN) BIN FIXED,
(CARD, FIELD) CtIAR(80), CLASS CHAR(t),
DISCRIMINATOR CHAR(Si) INIT(’7’)) STATIC,
D(8i)/*" VECTOR = CLASSIFIER*/ CHAR(t) DEF DISCRIMINA-

TOR; EXWORD = WORD; EXTYPE---TYPE;
@SWITCH: SELECT (D(N));
WHEN (’3’) @CASE3: DO; /*BLANK*/

N = N + t; DO WHILE(D(N) = ’3’); N = N + t; END;
GOTO @SWITCH;
END @CASES;

WHEN(’t’) @CASEi: DO; /*DtGIT*/
TYPE = ’9.’;A~IIOM =. N; N ----- N q- i; ~
DO WttILE(D(N) = ’i’); N = N + i; END;
WORD = SUBSTR(CARD, FROM, N--FROM);
END @CASEi;

WHEN(’2’) @CASE2: DO; /*LETTER*/
TYPE = ’A’; FROM = N; N = N q- i;
DO WHILE(D(N) <’3’); N = N + i; END;
WORD = SUBSTR (CARD, FROM, N -- FROM);
END @CASE2; .

WHEN(’4’) @CASE4: DO; /*SEPARATOR*/
WORD, TYPE ---- SUBSTR(CARD, N, i); N = N + t;
END @CASE4;

WHEN(’5’)@CASE5: DO; /*QUOTE*/
TYPE = ’X’; N = N + i; FROM = N; TOTAL = 0;

@Q: CLASS = e (N);
IF CLASS = ’7’
THEN CALL MES(’%O AFTER % L FOUND UNFINISHED
LITERAL’) ;
ELSE IF CLASS --]=’5’ THEN DO; N = N + i; GOTO @Q;
END;
/*QUOTE*/ LEN = N- FROH
SUBSTR(FIELD, TOTAL ÷ t, LEN) = SUBSTR(CARD,
FROM, LEN);
N -- N ÷ t; TOTAL -= TOTAL ÷ LEN;
IF D(N) -- ’5’ THEN D ; /*DOUBLE (!UOTE*/

FROM = N; N = N o- i; GOTO@Q;
END;

WORD :-- SUBSTR(FIELD, i, TOTAL);
END @CASE5;

WHEN(’6’) @CASE6: DO; /*UNRECOGNIZED SYHBOL*/
CALL MES (’%0 UNRECOGNIZED CODE’) ;
N -- N ÷ i; GOTO @SWITCH;
END @CASE6;

WHEN(’7’) @CASET: DO" /*QUESTION ~.IARK (END OF LINE)*/

IF EOF 9" 0 THEN GOTO @EOF;
ON ENDFILE (SYSIN) GOTO @EOF;
READ FILE(SYSIN) INTO(CARD);
DISCRIMINATOR = TRANSLATE(CARD,C);
D(8i) = ’7’; N = i;

GOTO ~SWITCH;
@EOF: TYPE = ’Z’; EOF = EOF ÷ i;

IF EOF ~.~ 2
THENCALLMES(’%O END OF FILE REACHED
BEFORE END OF PROGRAbl’);
E~D @CASE7;

OTHER CALL MES(’oAo CLASSIFER ERROR’) ;
END @SWITCH;
ENI) LEXAN;

Fig. I

(dou
the

posE:!

Synt~[

input!

ientll
and ~
ent ~

acter "3-9" to code the remaining classes (in Fig. 1 the class of ignored symbols is coded
by the character "3,"’ the class of separators~ by the character "4," quote by "5," unre.cognized
symbols by "6"), the header may be written in the form DO WHILE(D(K) <’3’). This header is
compiled using the instruction CLI, which ensures fairly fast extraction of identifiers from
the text. This arrangement of the classes is preferable to that used in the XPL compiler (see

[6], Table 9.3.3).

The instruction TRT provides the most efficient method for detecting °the end o~ compound

lexemes on ES computers. Therefore, if the data mainly consist of numbers and identifiers
(containing few literals), the lexic analysis can be speeded up by declaring a based variable
(e.g., MASK CHAR(80) BASED(CURSOR);) and using the following algorithm to detect the end of

a lexeme (e.g., the end of identifiers):

WtIEN(’2’) @CASE2: DO;
TYPE =’A’; FROM = N; N = N q-i;
CURSOR = ADDR(D(N));
N = N ÷ VERIFY(MASK, ’i2’);
WORD = SUBSTR(CARD,FROM,N- FROM
END @CASE2;

The shortcoming of this method is that the instruction TRT, which is compiled using the

built-in function VERIFY, operates with a 256-byte dictionary, whereas in our case a 7-byte
dictionary is quite sufficient (the discriminator does ’not include symbols other than 1-7).

Freefield data (like programs) contain a substantial number of blanks (about 50%). Under

these conditions, it¯ is paramount to maximize the skipping speed over ignored symbols, which
also ~dvocates using the instruction TRT.

Within the framework of the proposed method of lexic analysis, we can implement two addi-
tional tools which simplify data entry and improve the working conditions. When entering

large homogeneous data files, various attributes have fairly high repetition rates. Macros
can be used to avoid keying in the same sequence of symbols dozens of times. The simplest
macros analogous to the macros of the NEATED editor [8] are easily implemented on the lexlc
analyzer level.

Macros can be defined by enclosing any sequence of symbols in macrobrackets of the form
%symbol and symbol%, such as

%U MEMBER OF THE WRITERS UNION OF THE USSRU%

%L STATE PRIZE LAUREATE L%

After the macro is defined, the occurrence in the text of a combination of the form

%symbol is interpreted as a macro call, e.g.,

TVARDOVSKII %U %L.

Macros can be (nonrecursively) nested, and if necessary parameters can be passed to

called macros in this way.

Another feature of input data is that they often include sequences of identical numbers,

suoh as .

0.008 0.008 0.008 0.0| 0.0t 0.0i 0.02 0.02 0.07 0.02.

To simply the operator’s job, it is advisable to introduce a special symbol, e.g., "

(double quote), which is treated as a call to a special system macro with a value equal to

the last number entered. Then the above sequence can be simply keyed in as

0.008 " " 0.0~~ 0.02"""

This option not only simplifies the operator’s task but’actually reduces the number of
possible errors.

The syntactic analysis of the source data is intended to check the correspondence of the
input to the specific grammar describing the file structure. Syntactic analysis is conven-
iently applied to check the structure of each record (the presence of separators, the sequence
and the total number of attributes, etc.) and tile sequence of records (if records of differ-
ent types occur).

189

The syntactic structure of the file is convenlc~t].y described ~ BNF. [h)r inst;~l~cc, tl|e

structure of a hypothetical file containing information about authors can be described by the
grammar G (using a modified BNF accepted for the description of the language ADA [9]):

file :: = {record}
record :: = author name [nationality] [year of birth];
author name :: = literal--

nationality :: = identifier

year of birth :: = unsigned_integer
Examples of w~l:id records _In tl~e grammar (] are tl~c loIl.~wing:
’PUSHKIN A.S.’RUSSIAN 1799;
’LERI4ONTOV M.Yu. ’ 1814;
The following two records are invalid in the grammar G:

’BYRON GEORGE’ - 1788 1788;
’LOVELACE ADA’ ENGLISH WOMAN 1815;

Figure 2 presents a simplified program of syntactic analysis of the grammar G.

For f:i_|.es witl~out co~tcxLt|:|l clol)ol~do~cos (p.g., wtth~)~t ffle, l~l~; l,~dl~’.:~ll~ ~1~’ ~),~ml)~r ~)ff
repetitions of the following elements in the record), a syntactic recognizer c~ be automat-
ically generated in PL/I from the BNF-description of the grammar. McKeeman’s designer [6],

in particular, can be adapted for this purpose. Direct programming in PL/ 1 of the syntactic
analyzer for input data g~ammars is also fairly straightforward. The task can be f,rther
simplified by using a standard syntactic analysis block (see below).

The most interesting feature of the syntactic analysis block is that it allows flexible
response to errors in the source data. We distinguish between two types of respo~se: n~utra~-

izat~on and correction.

Error neutralization denotes a technique of finding a neutralization point where the an-

alysis can be resumed. The most primitive neutralization method is the so-called panic neu-
tralization: the entire record in which an error is detected is deleted, i.e.~ the neutral-
ization point is end of record. The advantage of the panic method is that it avoids unnec-

essary diagnostic mess.ages about nonexisting erors, whereas its shortcoming is the loss o~
all the information in the error-containing record. Our method allows error neutralization

with smaller loss of information.

We developed a simple neutra[iz~tio~ method which for simple (e.g., l~omogc~eo,s) data
structures allows continuing the analysis within the erroneous record with mi~im~m loss of

information. The method uses the syntactic record template to find the ne,tra]ization point.
If the string being analyzed hz~s a syntnctic skel.eton which differs fr~n~ tl~o to,npl:~tc, then

tile initial part of the str.Lng co[llcldlllg wll:ll t:l~o [~.[tt~[p,’~rt ~f II~, ~.~,r.l~lnl~, will
the skeleton head, whereas the end of the string coinciding with the end of the template will
be called the s~e~e~o~ ~a£~. Everything between the head and the tail is garbage, i,e., this

is the part of the record to be neutralized. It can be replaced with a syntactically valid
sequence of special neutralizing elements (e.g., each missing number can be repl_nced with

zeros, each missing identifier with a special identifier MISSING_WO~, each missing literal
with a special literal ’MISSING DATA’).

We will examine the operation of the method in application to the gramm~r C. TI~o sy,-
tactic template of a record in G is the stri~g "XA9;" (we ig~1~re tl~o ~ptlo~:~1..qllbstrlllgs |~1
the grammar since, as we shall see below, they are introduced for the purpose of error correc-

tion). For the record " "BYRON GEORGE’ -1788 1788"", the syntactic skeleton i~ the string "X-
99;" with the head X, the tail "9;" and garbage "--9." Replacing the garbage with the ne~tral-

izing lexeme (A, MISSING WORD) required by the template we obtain the following neutraliza-
tion: " ’BYRON GEORGE’ M~SS!NG WORD 1788;." Similarly, the record " ’LOVELACE ADA’ ENGLISH

WOMAN 1815;"’ will be neutralized by removing the second identifier from the skeleton "XAA9;,"

i.e., it will be transformed to " ’LOVELACE ADA’ ENGLISH 1815;."

Automatic error correction is more complex than neutralization, since it employs more

complex transformations of the record.being analyzed than neutralization does. There are two

~possible approaches to error dorrection: i) using a more complex grammar in order to allow

for possible syntax errors; 2)using formal syntax-error correctio~ methods.

The first approach is simple to implement and in f~ct produces quite acceptable results,

For example, the grammar G allows a situation in which the data elements "nationality" or
"year of birth" are missing. Therefore the program SYNTAX (Fig. 2) will correctly process

the
the

the records " ’LERMONTOV M. Yu.’ 1814;" (nationality missing) or " ’SHEVCHENKO T.G.’ UKRAINIAN;"
(date of birth missing). However, with this method, the designer should foresee the "typical
errors" and correspondingly modify the grammar.

The second approach does not require special analysis of the possible errors but it is
much more complex to imple, ment. A large number of automatic syntax-error correction tech-
niques are nv,ui].~ll)l.c (see tl~c bibli~)g~-apl~y i~ [10]), I)~t m~st of tl~em n~c mainly
ical value. In ~- ~l) i~i~, ~l~c m~st p~-actic~ble metl~od is the one described in [i0-12] which,
in historical perspective, constitutes an exteusion of the method for correction of spelling

errors [13], which we will consider in some. detail below.

No satJs[-;l~’.tory corr~.’~Lion mctll¢~ds are ;~V;lil;ll)lo fol- some of tlle (’OllllllOn errors Jn ~nptlt
data (a sl~il~ from Rt~ssian to La[iu case and vice versa; lack of separators between data of
different types such as RUSSIAN 1814, etc.). These errors are no’t included in the ordinary

methods for the correction of syntactic or semantic errors and require .development of new
methods.

Semantic Checking and Data Transformation

Compilers characteristically separate between syntactic analysis programs and semantic
subprog~*;mls. ’l’l~c lattc~- ;~t-e coml) incd into a semantic l)[ock. The application of th~s approach
to DICP yields the same benefits as in compilers: the collection of semantic modules becomes
more systematic, the syntax block is simplified, etc. It becomes possible to identify a set

of "typical" semantic modules and to develop a standard subprogram including these modules.
The w~rial)[e p~rts (’_;~n 1)c t-~,ncd witl~ a preprocessor. ’l’l~is Is st~t-ficiently s:tml)le for modules
which a) c:l~ccl¢ Llle range ol- the att~-ibt~tes and their siguificance; b) create output records;

c) check arithmetic relationships within the record (horizontal check sums).

The possibilities for the correction of semantic errors are constantly growing. .It is
diffic~~l.t t~) s~l’,l~’~’st g~,~;r;I[Im:tl~ods l-or tl~cot-i, ectioll o1 sem;tnt~t: errors, sillce they ~n-
elude runny difl:erent eraor categories. Most of the existing methods for the correction of
semantic errors utilize the context in which the error is detected.

Practicable correction metl~odsare c~rrently avail;able only for one type of semantic er-
rors, the so-calLed spelling errors [14]. Suppose that an identifier (or a literal) is not
found in the dictionary which lists all the allowed values .of this identifier. It is natural
to assume that this unrecognized identifier is a distorted image of one of the elements in the
dictionaPy. Several methods can be applied to find the "source" of the distorted element

[[5]. One; of tllc most st~’~:esst~l, metl~ds is that described in 116, 1.7], which is based on
dynamic programming techniques and has been developed for speech recognition by computer. The
method will correct several errors in one word.

In practical terms, it suffices to correct only single spelling errors. This can be done
by the method described in [13, 18], which combines simplicity with fairly high efficiency
and allows correcting four categories of spelling errors: i) one letter keyed in incorrectly;
2) one letter missing; 3) an extra character inserted; 4) two adjoining characters transposed

(statistical analysis shows that Dearly 80% of all spelling mistakes fall in one of these cat-
egories) .

The implementati6n of this method includes three stages: i) select from the dictionary

all the posgible candidates for replacement of the source word.; 2) eliminate unsuitable can-
didates, retaining only those which can be obtained by inserting, omitting, changing, or
l~r;insp~)sli~g a syml)~)l; 3) il- more tl~an t~nc c;~ndidate remains, sel.cci Lhc best c;~ndldate from
COllLex/ual. considerations or from some indirect criteria.

The first round of candidate selection is very fast, using the following criteria: the

length of the candidaCe should not differ from the length of the input word by more than one
symbol (since only single errors are being corrected); from among tile words of correct length
select only those in which either the first or the second letter is the same as in the input
word.

The second stage uses the algorithm which is schematically shown in Fig. 3. The function
MATCH (see Fig. 3) is called once in order to determine acceptability of the candidate and to
identify tile type of correction required. Two cases are distinguished: a) the compared words
are of tile same].ength; b) the word lengths differ (by one ~mbol).

191

SYNTAX: PROC OPTIONS(MAIN);
DCL (TYPE, EXTYPE) CHAR(1) EXT;
@READLOOP: CALL LEXAN; /* READ AUTHORS NAME*/

I~ TYPE.~-~.~---- ’X’ THEN GOTO (~EI/ROR:
CALL LEMAN; /* READ <NATIONALITY> OR
<YEAR OR BIRTH>*/
IF TYPE-]= ’A’ & TYPE-I:=’9’ TIIEN GOTO @ERROII;
1F TYPE ---- ’A’ THEN CALL LEXAN;/*

IF TYPE --] ~-’(,)’ & TYI’E-°] :-’;’ TIIEN GOTO (~,El/llOll;
IFTYI’E --= ’9’ TI1EN CALL LEXAN; /*READ
IF TYPE-] =’;’ THEN GOTO@ERROH;
GOTO @READLOOP: ’

@ERROR: CALL MES (’ERROR IN MESSAGE STARTING
¯ WITH %R’);

DO WHILE(TYPE-] =’;’); CALL LEXAN; END;
GOTO @READLOOP;

END. SYNTAX;
Fig. 2

MATCH: PROC RETURNS(BIT(i));
DCL (WORD, CANDIDAT) CHAR(80) VAn EXT,

ERTYPE CttAR(i) EXT,
FIRST BIN FIXED INIT(0),
(WF, CF) CHAR(80),
WS(80) CHAR(i) DEF WF,
CS(80) CHAR(i) DEF CF;

WF -- WORD; CF ---- CANDIDAT;
IF LENGTH(WORD) ---- LENGTH(CANDIDAT)
THEN /* EQUAL LENGTHS*/

@CASE_A: DO K---i TO LENGTH(WORD);
IF WS(K) -] = CS(K) TtiEN DO;

IF FIRST = 0 THEN DO; FIRST = ~[; ERTYPE = ’R’;
END;
ELSE.DO;
IF K--I= FIRST ÷ i! WS(FIRST) -]----- CS(K)I WS (K)-]----
CS(FIRST) TtIEN RETURN(’0’B);
ERTYPE = ’X’;
END;

END @CASE_A;
ELSE @CASE~B: l)O; /* UNEQUAL LENGTHS*/

IF LENGTII(WORD) ~ I~ENGTII(CANDIDAT)
THEN ERTYPE- ’I’; ELSE ERTYPE = ’D’;
L ---- MIN(LENGTH(WORD), LENGTH(CANDIDAT));
DO K----i TO L WHILE(WS(K)= CS (K)); END;
IF K~-~L TI-IEN DO;

IF ERTYPE =’I’ THEN DO; M = K + l; N = K; END;
ELSE DO; M ---- K; N = K -+- l; END;
L ---- L -- K ÷ i; /*L ~ TAIL LENGTH*/
IF SUBSTR(WF, M, L) -] = SUBSTR(CF, N, L)
TtIEN RETURN(’0’,B);

’ END @CASE_B;
RETURN(’i’B);

END MATCH;
Fig. 3

For case (a); if the words differ only in one symbol, then we have a replacement erro~

(ERTYPE=’R(); if the words differ in two adjoining symbols, we have a transposition error
(ERTYPE=’Xt); otherwise the candidate is dropped.

For case (b), the algorithm locates the first nonmatching symbol from the left and com-
pares the tails of the two words, starting with the first nonmatching symbol in the shorter
word. I.f the tails match, the candidate is acceptable (ERTYPE=’D’ if a symbol is missing
in the input word and ERTYPE=’I’ otherwise); otherwise the candidate is dropped.

192

If more than one candidate remains after this screening, a third stage is implemented.
It can be based on heuristic techniques exploiting the keyboard layout of the data entry sta-

tion. For example, correction of transpositions can be ranked according to the distance be-
tween the corresponding data entry keys (with allowance for the relevant shift).

Experience shows that the proposed algorithm is quite satisfactory with input words long-
er than five symbols (some 95% of the errors are corrected correctly). The best results are
achieved with correction of natural language words (names of towns, lists of na~es, etc.).

When working with large data bases, the speed of the second stage c~n be increas#d by

programming the function HATCH in Assembler. In this case, the first nonmatching symbol is
conveniently detected by a sequence of instructions XC ("Exclusive OR") ~nd TRT (afterthe

instruction XC is executed on the candidate and the input word, the first symbol in the re-
sult which is not X’00’ corresponds to the nonmatching symbol in the compared words).

Generation of Diagnostic Messages

Poor diagnostics.is characteristic of most existing data input and checking programs.
Yet the information content of the diagnostic messages can be Substantially improved by includ-
ing in the diagnostic subprogram a s~mple macrogenerator which inserts in the text of the mes- ~
sage macro calis of the form %s~/~bol, where s~/~n~ol is the macro call .name (see Fig. 2). The

macro generator will substitute~for each macf~ call it encounters the corresponding value

from the input text, e.g., %R is replaced with the text of the current lexeme, %L is replaced
with the text of the preceding lexeme, %0 is replaced with the text "RECORD record number

CONTAINS AN ERROR:," etc. --

For specific applications it is advisable to develop a standard diagnostic message scheme

¯ and to identify the words and phrases which are most frequently used in diagnostics. These
phrases can be coded as additional macro calls, thus red~c|ng the memory space occupied by
the message texts.

Implementation Features

In order to simplify DICP design, we developed a number of ready-made standard blocks
(in PL/I) of the previously described procedures. These include the lexic analyzer NEATLEX,

the syntax analyzer NEATSYNT, the semantic checking block NEATSEM, and the message generator

NEATMES [19].

Some of the variable text fragments in the standard blocks are handled by PL/I prepro-

cessor operators. The other changes should be made manually using a text editor. This ap-
proach is attributable both to the insufficient flexibility of the PL/I preprocessor (compared

with the OS/ES Assembler macro processor) and to the difficulty of foreseeing the changes that
will be required in order to adapt the standard blocks.

To simplify the DICP debugging, the standard blocks include a system for printing out
the debug information, controlled by a global bit string DEBUG (the output of debug informa-
tion from each block is controlled by a certain bit in the string). For example, in the NEAT-
LEX block, the debug operators are included in a DO group ~F DEBUG &’I’B THEN DO;..,END;

Since the debug operators increase the size of each block, they all are additionally en-
closed in the preprocessor group %IF DEBUGGING=I%THEN %DO; ...%END;. This preprocessor group
also applies to the debugging prefixes SIZE, STRINGSIZE, SUBSCRIPTRANGE, which should be in-
cluded in each block in the debugging mode.

The blocks communicate mainly through external variables, and not by parameters. This
ensures a certain "indicative dump" which prints out the values of the main global variables
when an execution error occurs in the program.

Some Advantages of SDDICP

The proposed method of DICP design was applied by the author to develop a system ~for
statistical processing of cost-accounting data. Experience shows that the SDDICP has a num-
ber of operating advantages compared with the usual DICP: fewer passes are required to clear
the input data from errors; the option of shorthand coding of attributes reduces the number

of errors and speeds up data entry; the inclusion of comments helps to prevent confusion with
data stored on magnetic media and facilitates the operator’s job.

193

~These features are particularly valuable for interactive data entry. Horeover, interac-

tive SDDICP offer more extensive automatic error correction features than batch SI}D[CP. The
most difficult errors can be eliminated by prompting the operator to 9pprove the proposed cor-

rection.

An important feature of SDDICP is the unification of input data formats with the format
used to input program texts (80-byte records with a seq~ence field). As a result, the ~nput
data can be stored in ordinary text libraries and manipulated by most of the software intended
for program text processing. The level of this software is usually an order of magnitude

higher than the corresponding data processing software. In particular, data correction using
screeu editors is faster, more convenient, ~ud more rcl. i~b[(~ tl~a~ wlt-l~ ~rdi~ry dat~
tion programs (which run in the batch mode and have a very primitive instruction set).

In some cases, both the raw and the checked data can be stored in libraries. This is
particularly useful if the data are structured so that a unit of information is representable
as a library segment. For example, in the above-described cost-accounting system, the report-

ed data of each plant are entered in a segment identified with the plant code and the proces-
sing is done by interpreting the freefield data. In this way the system exploits the power
OS/ES and utility tools available for the processing of library data

name, report, etc.).

The user field provided in each element of the table of contents can be used to store
information characterizing the logical unit of information on the whole (in our case, a plant

report). In this way we can create a whore l.ozg~ng system wl~[(’h at any m~m~cnt in time w[ll
produce information about recorded, checked (with an indication of the number of detected er-

rors), and processed reports. This logging system substantially simplifies the operation.

The rapid development of computer applications forces us to focus on tl~e croat:ion of
more "intelligent"’ DICPs. Syntax-directed DICPs make it possible to create programs which
free the user from the chore of correcting and repeatedly entering data three, four, or more
times. As tile amount of :input data entered on machine-sensible media increases, SI)DICPs can
be introduced to somewhat alleviate the load experienced by data entry departments.

The use of data banks has been recently expanding on a large scale. While simplifying
certain aspects of application program development, data banks create a whore range of new

problems. One of these is the loading of data iI~to the base. ’l’[~e data [o;~ding programs
usually do not ensure adequate checking of the input data, and the format assumed by the
loading program may be inconvenient for particular applications.

One of the ways to over{’om(’ this di[ficult7 ~s by creating a preprocess()r for the data
base loading program. ’[’he proposed metl~()d of I) I(]P design is l;~irly (,(~v<,~I~,~t I{,r l_l~is l~r-
pose: the SDDICP output format (the input format ofthe data base Loading program) is fixed,
so that we can prepare one set of semantic output modules and use them in all the preproces-

sors to be designed,

In conclusion, we wotl[d l_ike to stress tlg~liu that tile cstal)l, ishcd d:i(’l~()t()my of
iniorma-

tion into programs and datahasalways been and still remains quite arbitrary. This
applies

bott~ to data processing and data storage methgds. Therefore, considerable benefits can be

gained by overcoming the "program--data" barrier.

LITE[kATURE C ~TED

1. V. N. Agafonov et al., A Generator of Data input Programs for the ES Computer .[in Rus-

sian], Statistika, Moscow (1976).

2. D. Gries, Compiler Construction for Digital Computers, Wiley, New York (1971).

3. J. F. Gimpel, "The minimization of spatially multiplexed character sets," Commun. ACM,

17, No. 6, 315-318 (1974).
4. L. Baulier, "Compiler design methods," in: Programming Languages [Russian translation],

Mir, Moscow (1972), pp. 87-277.
5. W. L. Johnson, J. H. Porter, S. I. Askley, and I). T. Ross, "Automatic generation of el-

’ ficient lexical processors using finite state techniques," Commun. ACM,__ii, No. 12,

805-822 (1968). i) e-llall
6. W. M. McKeeman, J. ,I. }torning, and 1).!’,.Wortman, A (’,~mpi. l.cr Generator, rentic ,

Englewood Cliffs, New Jersey (1970).

194

7. Y. Chu, "A methodology of software engineering," IEEE Trans., Software Eng., SE-I, No.
262-270 (1975).

"A8. N. N. Bezrukov,
text editor with a powerful instruction set for OS/ES~" Programmirovan-

ie, No. 3, 39,48 (1981).
.9. The Programming Language ADA (A Preliminary Description) [Russian translation], Finansy

i Statistika, Moscow (1981).
i0. K. S. Tai, "Syntactic error correction in programming language@," IEEE Trans.~ Software

Eng., SE-4, No. 5, 414-425 (1978). ’{ Software Practice
ii. S. Feyock and P. Lazarus, "Syntax-directed correction of syntax errors,

Exp., 6, No. 2, 207-219 (1978)._12. F. E. Moth and A. 1. ’l’l~qrp, "Co~-~:cct[ng human errors in al_phanumer~c terminal ~nput,"

INf. Process. Manag., 13, No. 4, 329-337 (1976). ,,

13. F. Damerau, "A technique for computer detection and correction of spelling errors,

Co~un. ACM, 7, No. 4, .171-176 (1964).

14. J. L. Peterso~, "Computer programs for detecting and correcting spelling errors," Commun.

ACM, 23, No. 12, 676-687 (1980).
1-5. P. Hal~[and G. Dowling, "Approximate string matching," Computing Surveys, ~.~, No. 4,

381-402 (1.980). ,,
16. T. K. Vintsyuk, "Speech recognition by dynamic programming methods, Kibernetika, No. i,

81-88 (1968).
17. T. K. Vintsyuk, "Element-by-element recognition of continuous speech using words .from

" Kibernetika No 2, 13~-14~ (1971)given di~’tionary, , - "

18. H. I~. Morgan, "Spellinz corrcc[ion in sysLem programs," (]ommun. ACM, 13, No. 2, 90-94
(~970).

19. N. N. Bezrukov, "Translation to a high-level language as a method fo~ realization of
l)l-(}l~icm_()vi~nl:c~l lanZ~aZcs l)as~,d on relational algebra," Candidate’s Dissertation, IK

ONE APPI-’,OACI~ TO TlfI", SPECIFICATION AND VEIIIFICATION OF TRANSI,ATOltS

V. A. Nepomnyashchii and A.~ A. Sulimov
UDC 681.142.2:518.5

An approach to specifying and verifying a translator is described using as an example
the translator of a subset of BASIC. Facilities are listed for constructing formal

specifications of the scanner, syntactic and semantic analyzer, and code generator.

The method of inductive statements is used for verification. The correctness of the
specifications ~s machine tested.

Although small programs can be successfully verified (i.e., their correctness proved)
by the Fl.oyd lh)ar{~ method, the veriPication of large programs such as interpreters, transla-
tors, or operating systems stiff remains largely unsolved [i]. For verification a program
must first be annotated (i.e., formally specified including the output procedure conditions
and loop inv~rianl:s), and the conditions of correctness must be der-ived (using the axiomatic

The main difficulties encountered in verification of large progt-ams are associated with

the construction.of formal specifications which must be complete, comp.act, and suitable for
deriving correctness conditions. The approach to translator specification described in [2]
uses abstract data types. It is however not clear if the same approach is suitable for trans-

lator verification.
The present paper is a first step towards an analysis of the problem indicated above.

As a model for analysis we take the translator of a subset o:f BASIC (MINIBASIC [3]) intothree
BESM-6 computer machine language implemented in PASCAL. The translator is composed o~
parts: a scanner, syntactic and semantic analyzer, and code generator whose specifications
are separately described. To specify the scanner it was found .convenient to use a model of _

Trnnsl.a[ed from Progrmmuirovanie, No. 4, pp. 51-58, July-August 1983 Original article

submi.tted May 25, [982.

()361-7688/8"]/i)9()4-0195507.50 © 1984 Plenum Publishing Corporation 195

