Softpanorama

Home Switchboard Unix Administration Red Hat TCP/IP Networks Neoliberalism Toxic Managers
May the source be with you, but remember the KISS principle ;-)

bzip2 and pbzip2

From Wikipedia, the free encyclopedia
 
Developer(s) Julian Seward
Initial release July 18, 1996; 21 years ago (1996-07-18)[1]
 
Stable release 1.0.6 / September 20, 2010; 7 years ago (2010-09-20)
 
Operating system Cross-platform[which?]
Type Data compression
License BSD-like license[2]
Website bzip.org
bzip2
Filename extension .bz2
Internet media type application/x-bzip2
Type code Bzp2
Uniform Type Identifier (UTI) public.archive.bzip2
Magic number BZh
Developed by Julian Seward
Type of format Data compression
Open format? Yes

bzip2 is a free and open-source file compression program that uses the Burrows–Wheeler algorithm. It only compresses single files and is not a file archiver. It is developed and maintained by Julian Seward. Seward made the first public release of bzip2, version 0.15, in July 1996. The compressor's stability and popularity grew over the next several years, and Seward released version 1.0 in late 2000.[not verified in body]

Compression efficiency

bzip2 compresses most files more effectively than the older LZW (.Z) and Deflate (.zip and .gz) compression algorithms, but is considerably slower. LZMA is generally more space-efficient than bzip2 at the expense of even slower compression speed, while having much faster decompression.[3]

bzip2 compresses data in blocks of size between 100 and 900 kB and uses the Burrows–Wheeler transform to convert frequently-recurring character sequences into strings of identical letters. It then applies move-to-front transform and Huffman coding. bzip2's ancestor bzip used arithmetic coding instead of Huffman. The change was made because of a software patent restriction.[4]

bzip2 performance is asymmetric, as decompression is relatively fast. Motivated by the large CPU time required for compression, a modified version was created in 2003 called pbzip2 that supported multi-threading, giving almost linear speed improvements on multi-CPU and multi-core computers.[5] As of May 2010[update], this functionality has not been incorporated into the main project.

Like gzip, bzip2 is only a data compressor. It is not an archiver like tar or ZIP; the program itself has no facilities for multiple files, encryption or archive-splitting, but, in the UNIX tradition, relies instead on separate external utilities such as tar and GnuPG for these tasks.

Compression stack

Bzip2 uses several layers of compression techniques stacked on top of each other, which occur in the following order during compression and the reverse order during decompression:

  1. Run-length encoding (RLE) of initial data
  2. Burrows–Wheeler transform (BWT) or block sorting
  3. Move to front (MTF) transform
  4. Run-length encoding (RLE) of MTF result
  5. Huffman coding
  6. Selection between multiple Huffman tables
  7. Unary base 1 encoding of Huffman table selection
  8. Delta encoding (Δ) of Huffman code bit-lengths
  9. Sparse bit array showing which symbols are used

Initial run-length encoding

Any sequence of 4 to 255 consecutive duplicate symbols is replaced by the first four symbols and a repeat length between 0 and 251. Thus the sequence "AAAAAAABBBBCCCD" is replaced with "AAAA\3BBBB\0CCCD", where "\3" and "\0" represent byte values 3 and 0 respectively. Runs of symbols are always transformed after four consecutive symbols, even if the run-length is set to zero, to keep the transformation reversible.

In the worst case, it can cause an expansion of 1.25 and best case a reduction to <0.02 . While the specification theoretically allows for runs of length 256–259 to be encoded, the reference encoder will not produce such output.

The author of bzip2 has stated that the RLE step was a historical mistake and was only intended to protect the original BWT implementation from pathological cases.[6]

Burrows–Wheeler transform

This is the reversible block-sort that is at the core of bzip2. The block is entirely self-contained, with input and output buffers remaining the same size—in bzip2, the operating limit for this stage is 900 kB. For the block-sort, a (notional) matrix is created in which row i {\displaystyle i} contains the whole of the buffer, rotated to start from the i t h {\displaystyle i^{\mathrm {th} }} symbol. Following rotation, the rows of the matrix are sorted into alphabetic (numerical) order. A 24-bit pointer is stored marking the starting position for when the block is untransformed. In practice, it is not necessary to construct the full matrix; rather, the sort is performed using pointers for each position in the buffer. The output buffer is the last column of the matrix; this contains the whole buffer, but reordered so that it is likely to contain large runs of identical symbols.

Move to front transform

Again, this transform does not alter the size of the processed block. Each of the symbols in use in the document is placed in an array. When a symbol is processed, it is replaced by its location (index) in the array and that symbol is shuffled to the front of the array. The effect is that immediately recurring symbols are replaced by zero symbols (long runs of any arbitrary symbol thus become runs of zero symbols), while other symbols are remapped according to their local frequency.

Much "natural" data contains identical symbols that recur within a limited range (text is a good example). As the MTF transform assigns low values to symbols that reappear frequently, this results in a data stream which contains many symbols in the low integer range, many of them being identical (different recurring input symbols can actually map to the same output symbol). Such data can be very efficiently encoded by any legacy compression method.

Run-length encoding of MTF result

Long strings of zeros in the output of the move-to-front transform (which come from repeated symbols in the output of the BWT) are replaced by a sequence of two special codes, RUNA and RUNB, which represent the run-length as a binary number. Actual zeros are never encoded in the output; a lone zero becomes RUNA. (This step in fact is done at the same time as MTF is; whenever MTF would produce zero, it instead increases a counter to then encode with RUNA and RUNB.)

The sequence 0,0,0,0,0,1 would be represented as RUNA,RUNB,1; RUNA,RUNB represents the value 5 as described below. The run-length code is terminated by reaching another normal symbol. This RLE process is more flexible than the initial RLE step, as it is able to encode arbitrarily long integers (in practice, this is usually limited by the block size, so that this step does not encode a run of more than 900000 bytes). The run-length is encoded in this fashion: assigning place values of 1 to the first bit, 2 to the second, 4 to the third, etc. in the sequence, multiply each place value in a RUNB spot by 2, and add all the resulting place values (for RUNA and RUNB values alike) together. This is similar to base-2 bijective numeration. Thus, the sequence RUNA,RUNB results in the value (1 + 2 × 2) = 5. As a more complicated example:

RUNA RUNB RUNA RUNA RUNB (ABAAB)
   1    2    4    8   16
   1    4    4    8   32 = 49

Huffman coding

This process replaces fixed length symbols in the range 0–258 with variable length codes based on the frequency of use. More frequently used codes end up shorter (2–3 bits) whilst rare codes can be allocated up to 20 bits. The codes are selected carefully so that no sequence of bits can be confused for a different code.

The end-of-stream code is particularly interesting. If there are n different bytes (symbols) used in the uncompressed data, then the Huffman code will consist of two RLE codes (RUNA and RUNB), n − 1 symbol codes and one end-of-stream code. Because of the combined result of the MTF and RLE encodings in the previous two steps, there is never any need to explicitly reference the first symbol in the MTF table (would be zero in the ordinary MTF), thus saving one symbol for the end-of-stream marker (and explaining why only n − 1 symbols are coded in the Huffman tree). In the extreme case where only one symbol is used in the uncompressed data, there will be no symbol codes at all in the Huffman tree, and the entire block will consist of RUNA and RUNB (implicitly repeating the single byte) and an end-of-stream marker with value 2.

0: RUNA
1: RUNB
2–257: byte values 0–255
258: end of stream, finish processing. (could be as low as 2).

Multiple Huffman tables

Several identically-sized Huffman tables can be used with a block if the gain from using them is greater than the cost of including the extra table. At least two (2) and up to six (6) tables can be present, with the most appropriate table being reselected before every 50 symbols processed. This has the advantage of having very responsive Huffman dynamics without having to continuously supply new tables, as would be required in DEFLATE. Run-length encoding in the previous step is designed to take care of codes that have an inverse probability of use higher than the shortest code Huffman code in use.

Unary encoding of Huffman table selection

If multiple Huffman tables are in use, the selection of each table (numbered 0 to 5) is done from a list by a zero-terminated bit run between one (1) and six (6) bits in length. The selection is into a MTF list of the tables. Using this feature results in a maximum expansion of around 1.015, but generally less. This expansion is likely to be greatly over-shadowed by the advantage of selecting more appropriate Huffman tables and the common-case of continuing to use the same Huffman table is represented as a single bit. Rather than unary encoding, effectively this is an extreme form of a Huffman tree where each code has half the probability of the previous code.

Delta encoding

Huffman code bit-lengths are required to reconstruct each of the used canonical Huffman tables. Each bit-length is stored as an encoded difference against the previous code bit-length. A zero-bit (0) means that the previous bit-length should be duplicated for the current code, whilst a one-bit (1) means that a further bit should be read and the bit-length incremented or decremented based on that value.

In the common case a single bit is used per symbol per table and the worst case—going from length one (1) to length twenty (20)—would require approximately 37 bits. As a result of the earlier MTF encoding, code lengths would start at 2–3 bits long (very frequently used codes) and gradually increase, meaning that the delta format is fairly efficient—requiring around 300 bits (38 bytes) per full Huffman table.

Sparse bit array

A bitmap is used to show which symbols are used inside the block and should be included in the Huffman trees. Binary data is likely to use all 256 symbols representable by a byte, whereas textual data may only use a small subset of available values, perhaps covering the ASCII range between 32 and 126. Storing 256 zero bits would be inefficient if they were mostly unused. A sparse method is used: the 256 symbols are divided up into 16 ranges and only if symbols are used within that block is a 16-bit array included. The presence of each of these 16 ranges is indicated by an additional 16-bit bit array at the front.

The total bitmap uses between 32 and 272 bits of storage (4–34 bytes). For contrast, the DEFLATE algorithm would show the absence of symbols by encoding the symbols as having a (zero) bit-length with Run Length Encoding and additional Huffman coding.

File format

A .bz2 stream consists of a 4-byte header, followed by zero or more compressed blocks, immediately followed by an end-of-stream marker containing a 32-bit CRC for the plaintext whole stream processed. The compressed blocks are bit-aligned and no padding occurs.

.magic:16                       = 'BZ' signature/magic number
.version:8                      = 'h' for Bzip2 ('H'uffman coding), '0' for Bzip1 (deprecated)
.hundred_k_blocksize:8          = '1'..'9' block-size 100 kB-900 kB (uncompressed)

.compressed_magic:48            = 0x314159265359 (BCD (pi))
.crc:32                         = checksum for this block
.randomised:1                   = 0=>normal, 1=>randomised (deprecated)
.origPtr:24                     = starting pointer into BWT for after untransform
.huffman_used_map:16            = bitmap, of ranges of 16 bytes, present/not present
.huffman_used_bitmaps:0..256    = bitmap, of symbols used, present/not present (multiples of 16)
.huffman_groups:3               = 2..6 number of different Huffman tables in use
.selectors_used:15              = number of times that the Huffman tables are swapped (each 50 bytes)
*.selector_list:1..6            = zero-terminated bit runs (0..62) of MTF'ed Huffman table (*selectors_used)
.start_huffman_length:5         = 0..20 starting bit length for Huffman deltas
*.delta_bit_length:1..40        = 0=>next symbol; 1=>alter length
                                                { 1=>decrement length;  0=>increment length } (*(symbols+2)*groups)
.contents:2..∞                  = Huffman encoded data stream until end of block (max. 7372800 bit)

.eos_magic:48                   = 0x177245385090 (BCD sqrt(pi))
.crc:32                         = checksum for whole stream
.padding:0..7                   = align to whole byte

Because of the first-stage RLE compression (see above), the maximum length of plaintext that a single 900 kB bzip2 block can contain is around 46 MB (45,899,236 bytes). This can occur if the whole plaintext consists entirely of repeated values (the resulting .bz2 file in this case is 46 bytes long). An even smaller file of 40 bytes can be achieved by using an input containing entirely values of 251, an apparent compression ratio of 1147480.9:1.

The compressed blocks in bzip2 can be independently decompressed, without having to process earlier blocks. This means that bzip2 files can be decompressed in parallel, making it a good format for use in big data applications with cluster computing frameworks like Hadoop and Apache Spark.[7]

Recommended Links

Google matched content

Softpanorama Recommended

Top articles

Sites

Implementations

In addition to Julian Seward's original reference implementation, the following programs support bzip2 format.

 



Etc

FAIR USE NOTICE This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in our efforts to advance understanding of environmental, political, human rights, economic, democracy, scientific, and social justice issues, etc. We believe this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit exclusivly for research and educational purposes.   If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. 

ABUSE: IPs or network segments from which we detect a stream of probes might be blocked for no less then 90 days. Multiple types of probes increase this period.  

Society

Groupthink : Two Party System as Polyarchy : Corruption of Regulators : Bureaucracies : Understanding Micromanagers and Control Freaks : Toxic Managers :   Harvard Mafia : Diplomatic Communication : Surviving a Bad Performance Review : Insufficient Retirement Funds as Immanent Problem of Neoliberal Regime : PseudoScience : Who Rules America : Neoliberalism  : The Iron Law of Oligarchy : Libertarian Philosophy

Quotes

War and Peace : Skeptical Finance : John Kenneth Galbraith :Talleyrand : Oscar Wilde : Otto Von Bismarck : Keynes : George Carlin : Skeptics : Propaganda  : SE quotes : Language Design and Programming Quotes : Random IT-related quotesSomerset Maugham : Marcus Aurelius : Kurt Vonnegut : Eric Hoffer : Winston Churchill : Napoleon Bonaparte : Ambrose BierceBernard Shaw : Mark Twain Quotes

Bulletin:

Vol 25, No.12 (December, 2013) Rational Fools vs. Efficient Crooks The efficient markets hypothesis : Political Skeptic Bulletin, 2013 : Unemployment Bulletin, 2010 :  Vol 23, No.10 (October, 2011) An observation about corporate security departments : Slightly Skeptical Euromaydan Chronicles, June 2014 : Greenspan legacy bulletin, 2008 : Vol 25, No.10 (October, 2013) Cryptolocker Trojan (Win32/Crilock.A) : Vol 25, No.08 (August, 2013) Cloud providers as intelligence collection hubs : Financial Humor Bulletin, 2010 : Inequality Bulletin, 2009 : Financial Humor Bulletin, 2008 : Copyleft Problems Bulletin, 2004 : Financial Humor Bulletin, 2011 : Energy Bulletin, 2010 : Malware Protection Bulletin, 2010 : Vol 26, No.1 (January, 2013) Object-Oriented Cult : Political Skeptic Bulletin, 2011 : Vol 23, No.11 (November, 2011) Softpanorama classification of sysadmin horror stories : Vol 25, No.05 (May, 2013) Corporate bullshit as a communication method  : Vol 25, No.06 (June, 2013) A Note on the Relationship of Brooks Law and Conway Law

History:

Fifty glorious years (1950-2000): the triumph of the US computer engineering : Donald Knuth : TAoCP and its Influence of Computer Science : Richard Stallman : Linus Torvalds  : Larry Wall  : John K. Ousterhout : CTSS : Multix OS Unix History : Unix shell history : VI editor : History of pipes concept : Solaris : MS DOSProgramming Languages History : PL/1 : Simula 67 : C : History of GCC developmentScripting Languages : Perl history   : OS History : Mail : DNS : SSH : CPU Instruction Sets : SPARC systems 1987-2006 : Norton Commander : Norton Utilities : Norton Ghost : Frontpage history : Malware Defense History : GNU Screen : OSS early history

Classic books:

The Peter Principle : Parkinson Law : 1984 : The Mythical Man-MonthHow to Solve It by George Polya : The Art of Computer Programming : The Elements of Programming Style : The Unix Hater’s Handbook : The Jargon file : The True Believer : Programming Pearls : The Good Soldier Svejk : The Power Elite

Most popular humor pages:

Manifest of the Softpanorama IT Slacker Society : Ten Commandments of the IT Slackers Society : Computer Humor Collection : BSD Logo Story : The Cuckoo's Egg : IT Slang : C++ Humor : ARE YOU A BBS ADDICT? : The Perl Purity Test : Object oriented programmers of all nations : Financial Humor : Financial Humor Bulletin, 2008 : Financial Humor Bulletin, 2010 : The Most Comprehensive Collection of Editor-related Humor : Programming Language Humor : Goldman Sachs related humor : Greenspan humor : C Humor : Scripting Humor : Real Programmers Humor : Web Humor : GPL-related Humor : OFM Humor : Politically Incorrect Humor : IDS Humor : "Linux Sucks" Humor : Russian Musical Humor : Best Russian Programmer Humor : Microsoft plans to buy Catholic Church : Richard Stallman Related Humor : Admin Humor : Perl-related Humor : Linus Torvalds Related humor : PseudoScience Related Humor : Networking Humor : Shell Humor : Financial Humor Bulletin, 2011 : Financial Humor Bulletin, 2012 : Financial Humor Bulletin, 2013 : Java Humor : Software Engineering Humor : Sun Solaris Related Humor : Education Humor : IBM Humor : Assembler-related Humor : VIM Humor : Computer Viruses Humor : Bright tomorrow is rescheduled to a day after tomorrow : Classic Computer Humor

The Last but not Least


Copyright © 1996-2016 by Dr. Nikolai Bezroukov. www.softpanorama.org was created as a service to the UN Sustainable Development Networking Programme (SDNP) in the author free time. This document is an industrial compilation designed and created exclusively for educational use and is distributed under the Softpanorama Content License.

The site uses AdSense so you need to be aware of Google privacy policy. You you do not want to be tracked by Google please disable Javascript for this site. This site is perfectly usable without Javascript.

Original materials copyright belong to respective owners. Quotes are made for educational purposes only in compliance with the fair use doctrine.

FAIR USE NOTICE This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available to advance understanding of computer science, IT technology, economic, scientific, and social issues. We believe this constitutes a 'fair use' of any such copyrighted material as provided by section 107 of the US Copyright Law according to which such material can be distributed without profit exclusively for research and educational purposes.

This is a Spartan WHYFF (We Help You For Free) site written by people for whom English is not a native language. Grammar and spelling errors should be expected. The site contain some broken links as it develops like a living tree...

You can use PayPal to make a contribution, supporting development of this site and speed up access. In case softpanorama.org is down you can use the at softpanorama.info

Disclaimer:

The statements, views and opinions presented on this web page are those of the author (or referenced source) and are not endorsed by, nor do they necessarily reflect, the opinions of the author present and former employers, SDNP or any other organization the author may be associated with. We do not warrant the correctness of the information provided or its fitness for any purpose.

Last modified: May, 26, 2018