Conficker.C
A Technical Analysis

Niall Fitzgibbon and Mike Wood
SophosLabs, Sophos Inc.

April 1, 2009

Abstract

The Conficker worm has grown to be one of the most technologi-
cally advanced and resilient botnets to date. While the initial worm
variants, Conficker.A, Conficker.B and Conficker. B++, had a primary
focus on spreading infection, the latest variant Conficker.C' demon-
strates a paradigm shift — moving away from overt infection tactics
toward stealthly and robust operations. This paper will discuss the
evolution of the Conficker malware family with special focus on the
technological advancements in Conficker.C that have turned the mil-
lions of compromised machines from isolated infections to a collective
of self-organizing peers capable of rapid malware distribution and re-
silient against infiltration of their communication paths.

DISCLAIMER

This is a living document containing the results of our analysis of the Conficker.C
worm to date. As such, the details presented here remain subject to ongoing im-
provement and corrections.

Contents

1 Introduction 3
2 Armor 3
2.1 Removal prevention L. 4
2.1.1 Locking the DLL fileondisk 4

2.1.2 Service registry key permissions 4

2.1.3 Disabling Windows services 4

2.1.4 Blocking websites o0)

2.1.5 Terminating security processes)

2.2 Obfuscation 6
2.3 Virtual machine detection 6
2.4 Patching MS08-067 7

3 Peer-to-Peer Activity 7
3.1 Setup 7
3.2 Peer Serving Logic oo, 8
3.3 Finding peerso 9
3.4 Shared Content L. 10

4 Domain Rendezvous (“Callhome”) Mechanism 10
4.1 Protocol 10
4.2 Blacklisting oo 11
4.3 What happens on a successful rendezvous? 11

5 Cryptography 12
6 Discussion 12
7 Conclusion 13
8 Appendix 14
81 RSA PublicKeys 14

1 Introduction

The Conficker family of malware is currently restricted to Windows ma-
chines. The key attack vector used by Conficker.A is the MS08-067 RPC
NetPathCanonicalize vulnerability. This variant first appeared mid Novem-
ber 2008, followed by Conficker.B in late December 2008 and Conficker. B++
in February 2009. The most recent variant, Conficker.C, was first seen at
the start of March 2009 when it was installed as an update on computers
already infected with Conficker.B and Conficker. B++.

Conficker.B and Conficker. B++ were responsible for the major growth in
the size of the Conficker botnet, as they were able to spread using Windows
file sharing and autorun.inf files on USB media, in addition to the MS08-
067 vulnerability used by Conficker.A.

The initial variants used clever social engineering for a secondary attack
vector via autorun files in removable storage devices (e.g. USB drives). The
worm also spread via network shares, pummeling the network with netbios
activity.

Interestingly, the new Conficker.Chas replaced the above spreading func-
tionality with a more robust peer-to-peer (p2p) content distribution system.
The peer-to-peer mechanism enables a Conficker.C infected host to share
executable content between its peers. This essentially makes Conficker.C
hosts capable of executing arbitrary content — a dramatic increase to the
flexibility and potential for harm. In brief, the peer-to-peer mechanisms in
Conficker.C allow an infected machine to:

e find other Conficker.C peers using a unique IP-to-port address map-
ping

e distribute or receive content, cryptographically signed only by the Con-
ficker author(s)

e execute received content, for which the cryptographic signature is ver-
ified

Peer-to-peer functionality is discussed in greater depth in Section 3.

In the following sections we discuss several of the key advancements in
the latest variant, Conficker.C, in the ongoing evolution of this malware
family.

2 Armor

Conficker.C contains several features designed to prevent its removal from an
infected computer. It also makes use of compiler-level obfuscation to make
reverse engineering more difficult and contains code to detect whether it’s
running inside a virtual machine. Furthermore, Conficker.C hooks the API

function that is responsible for the MS08-067 vulnerability that previous
variants of Conficker exploited in order to spread.

2.1 Removal prevention

In an effort to make removal of the worm more difficult Conficker. C attempts
to

e lock the Conficker.C' DLL file on disk to prevent it being scanned or
deleted

e remove registry permissions from the service key for the Conficker.C
DLL file to prevent it being examined or deleted by the Administrator
account

e disable Windows services related to updates and security

e block access to security-related websites to prevent Windows and anti-
virus software updating and to stop the user downloading removal tools

e terminate processes related to security diagnostic tools and Conficker
removal tools

2.1.1 Locking the DLL file on disk

Conficker.C uses the LockFile Windows API to prevent other applications
from reading or writing to the Conficker.C DLL file until the process hold-
ing the lock is terminated. This may cause complications when scanners
attempt to read, detect and remove Conficker.C. The lock may need to
be broken before detection and removal are possible. Generally, the Con-
ficker.C DLL will be loaded inside svchost.exe -k netsvcs, a legitimate
Windows service process, and terminating the process will break the lock
on the file.

2.1.2 Service registry key permissions

After creating the service registry entries to load the Conficker.C module
as part of the netsvcs service group, the worm will manipulate the access
control list (ACL) of the service keys, restricting the SYSTEM user to read
access and removing permissions for every other user. This prevents all
users, including local and domain administrators, from opening or deleting
the registry key.

2.1.3 Disabling Windows services

Conficker.C disables the following services:

e wscsvc - Security Centre

e WinDefend - Windows Defender

e wuauserv - Automatic Updates

e BITS - Background Intelligent Transfer Service
e ERSvc - Error Reporting Service

e WerSvc - Windows Error Reporting

The worm removes the following registry key to prevent Windows De-
fender from running on startup:
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\Windows Defender

A registry key is removed to suppress Windows Security Centre notifi-
cations:
HKLM\Software\Microsoft\Windows\CurrentVersion\explorer\
ShellServiceObjects\{FD6905CE-952F-41F1-9A6F-135D9C6622CC}

Conficker.C deletes the following key to disable booting Windows in safe
mode:
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot

2.1.4 Blocking websites

Once loaded Conficker.C hooks the following Windows API functions from
dnsapi.dll in order to intercept DNS requests: DnsQuery_A, DnsQuery _UTF8,
DnsQuery W and Query Main. When a DNS request occurs, Conficker.C
checks for matches against a list of blocked domains. If there is a match,
Conficker.C calls SetLastError with a value of ERROR_TIMEQUT and then
returns this error without calling the original function.

Conficker.C also hooks the ws2_32.d11 function sendto as long as the
dnsrslvr.dll module is loaded in the current process. The sendto hook
function checks if it is being called from dnsrslvr.dll. If the call comes
from dnsrslvr.dll then Conficker.C will check if the domain name is in
the blocked domain list and if so will replace it with a randomized string.

2.1.5 Terminating security processes

Conficker.C continuously monitors the list of running processes. For each
process, the worm checks for a substring match on any of the strings in its
table of blacklisted process names. For processes with names in the blacklist,
Conficker.C will first suspend all threads belonging to the process and then
call TerminateProcess to kill the process itself.

2.2 Obfuscation

Like much recent malware, Conficker.C uses obfuscation in several places.
Firstly, the DLL file itself is encrypted and will decrypt itself into newly
allocated memory within the current process when it starts up. The de-
cryption routine is polymorphic and makes heavy use of redundant API
calls and “spaghetti code”, where functions are split up and connected by
x86 jmp instructions (both direct and indirect). The spaghetti code obfus-
cation makes static analysis more difficult as it is hard for the analyst to
view a linear disassembly listing for each function, and they must resort to
more advanced disassembler features such as graph views. Redundant API
calls are somewhat effective at preventing accurate emulation by anti-virus
engines, as it is unlikely that they have a full and correct implementation of
all possible Windows API functions and while they may properly emulate
the loading and unloading of stack arguments and return values for most
functions, they are less likely to properly take account of secondary effects
such as error values (available from the GetLastError Windows API).

Once decrypted, Conficker.C differs from previous variants in that a por-
tion of its unpacked code is also obfuscated with the same spaghetti code
technique. However, the unpacked code does not contain fake API calls and
can be analysed relatively easily once the spaghetti code is accounted for.
APIs used in the obfuscated code are dynamically imported, with the re-
solved API addresses being stored in dynamically allocated memory outside
of the main Conficker.C module. The code protected by this newly intro-
duced obfuscation is mainly related to the peer-to-peer networking function-
ality.

2.3 Virtual machine detection

Conficker.C contains several different checks to determine if it is running
inside a virtual machine environment. These checks are split over two areas
of the Conficker.C code.

The first check takes place at the start of the main initialization thread,
before most other initialization has taken place. Conficker.C executes the
sldt instruction to store the segment of the local descriptor table in a regis-
ter. If the result is a non-zero value, Conficker.C assumes that it is running in
a virtual machine and executes a Sleep API call with time set to INFINITE.

A later set of checks occurs during initialization of the peer-to-peer net-
working functionality. If any of these tests suggests that the malware is
running inside a virtual machine, then Conficker.C will not terminate but
instead will set corresponding bitfields inside a block of platform information
that is later transmitted over the peer-to-peer network. The further checks
done in this function include

e a repeat of the initial s1dt check mentioned above

a Red Pill-style check using sidt that is continuously repeated for one
second, only passing if the value returned from sidt didn’t indicate
the presence of a virtual machine once in that time

e a test using the str instruction, comparing the stored task register
with 4000h

e a test using the sgdt instruction, checking if the result is in the range
0f££000000h to Offfffffffh

e a test using the in instruction with parameter ‘VMXh’ to check for the
presence of a VMWare virtual machine

e a test using the illegal instruction 0f 3f 07 Ob which would normally
trigger an illegal opcode exception, but which is known to be handled
differently if the program is running inside VirtualPC

2.4 Patching MS08-067

Once loaded, Conficker.C hooks the NetpwCanonicalizePath export of
netapi32.d1l that is central to the exploitation of the MS08-067 vulnerabil-
ity. The hook function contains a validation check that effectively patches
the computer against further exploitation via MS08-067 as long as Con-
ficker.C'is loaded. If the argument passed to NetpwCanonicalizePath con-
tains the substring “\..\” or is over 200 bytes in length, the hook function
will call SetLastError with error value ERROR_INVALID PARAMETER and re-
turn this error value without calling the original NetpwCanonicalizePath
function. Other security analysts have developed a remote scanning system
that identifies computers infected with Conficker by analyzing the effects of
these extra failure conditions on network responses from an infected com-
puter.

3 Peer-to-Peer Activity

Conficker.C includes a p2p mechanism, enabling Conficker.C infected hosts
to distribute signed Conficker-only content between peers. This content can
also be executed as a new thread in the same address space as the Con-
ficker.C process. This section discusses the various aspects of the p2p mech-
anism we have observed to date, including the initial setup, bootstrapping
peer connections, and file sharing

3.1 Setup

The p2p setup is called from the main Conficker installation thread after all
of the main installation actions, such as

hooking certain Windows APIs

installing itself in the registry

e injecting itself into the svchost or services process

locking the file on disk
e disabling security tools

However the p2p system is started before the callhome protocol. After
the above steps, Conficker.C sleeps for a random 5 to 35 minutes before
attempting to start p2p networking, and further sleeps for random 30 to
90 minutes after p2p networking has begun before starting the callhome
procedure.

The p2p process begins by saving the time and tick count when the
process begins. This value is used extensively throughout the p2p protocol,
but particularly when determining when the lifetime of a file managed by
the node has expired (and should be deleted).

Next, the directory used to store p2p managed content is created. The
GetTempPath function is used to retrieve a base directory. As described in
the MSDN documentation, this function will enumerate the environment
variables TMP, TEMP and USERPROFILE in that order looking for a directory
name before defaulting to the system WINDOWS directory. A sub-directory of
this base directory is then created with a name using the following format
string:

{,08X-%04X-%04X-%04X-%08X%04X}

For example, the p2p directory name observed on one of our test systems
was

C:\WINDOWS\ Temp\ {27623480-9BE0-244C-E6CD-E64B466BBDE2}

3.2 Peer Serving Logic

Conficker.C can act as both a client and a server to share content, both
distributing to and receiving from other Conficker.C peers. An instance of
a Conficker.C p2p server consists of the following threads:

1. a time synchronization thread — used to set the system time using a
time value parsed from an HTTP GET request made to one of a long
list of legitimate domains;
the requests are repeated in a loop, separated by a random interval of
90 to 120 seconds

2. four scanning threads — 2 TCP, 2 UDP — used to actively locate other
Conficker.C peers

3. a main server thread — used to passively listen for scanning Conficker.C
peers

The main server thread creates 4 sockets — 2 TCP and 2 UDP — to listen
for incoming connections from scanning Conficker.C peers. These sockets
are bound to port numbers that are derived from the IP address on which
the sockets listen. The algorithm to generate these port numbers creates
four unique ports on which to listen — two for TCP sockets and two for
UDP sockets.

The four scanning threads generate a random list of IP addresses to
contact. The same IP-to-port mapping is used to determine which ports
on which IPs should be targeted. The behavior of these threads and the
IP-to-port algorithm is further discussed in Section 3.3.

A Conficker.C infected host can have as many as 32 confick server in-
stances running. One server instance will be created for each IP address
that is not filtered out by Conficker.C’s IP blacklisting techniques.

3.3 Finding peers

Four scanning threads form the active scanning component of Conficker.C’s
p2p mechanism. For each scanning thread, 100 IP addresses are generated
and probed in a batch with the probes in each batch separated by small
fixed intervals of 2-5 seconds.

Unlike many p2p networks that require an initial seed list of peers, Con-
ficker.C' is designed to bootstrap communication with other Conficker.C
peers using a deterministic IP-to-port address mapping routine. For each
generated IP address to be probed, the current internet time (as managed
by the internet time thread) is used as a seed value to mix the bytes of the
IP address to deterministically compute four port numbers — two for use by
UDP sockets, and two for TCP sockets.

Each time an IP-to-port mapping is calculated, the internet time value
is checked to determine whether to re-seed the algorithm. The seed is re-
calculated if 60 seconds has elapsed since the last time the seed was set.
However, the computation will only change the seed value every 604801
seconds — which is 7 days worth of seconds plus 1. Thus, Conficker.C server
port numbers change on a weekly basis.

Naturally, this IP-to-port mapping is the same computation used in the
server main thread where the four listening sockets are created. The main
thread also checks periodically for changes to the port generation seed, clos-
ing and re-opening the listening sockets when a change is detected. During
a Conficker.C host scan, one of the two ports generated for the protocol
in use (TCP or UDP) is randomly selected for the probe. Though, this
random selection does not impact the success rate of finding peers since a
Conficker.C server (if one exists at the IP being probed) will be listening on
both ports generated.

Interestingly, when computing this weekly dynamic seed, the current
time must fall between Jan 14, 2009 and Jan 15, 2015. If the current time
falls outside this range, fixed seeds are used for the port number calcula-
tion. Thus, using this date range as an indicator for the Conficker author’s
intentions, he, she or they appear(s) to believe this protocol will stand the
test of time for several years to come.

3.4 Shared Content

All content shared between Conficker.C peers is checked for a valid digital
signature. The signature validation process is the same as that used in the
Rendezvous Protocol (see Section 4), however a separate RSA key is used
for p2p binary validation.

Shared content between Conficker.C peers is stored as files in the p2p
directory described in Section 3.1. This directory is restricted to hold a
maximum of 64 files. If this maximum is reached, the directory is cleaned
of any files not created within the last 10 minutes, or any files with a write
time not within the last 1 minute. The file names are numbers, representing
the location in the list of Conficker.C shared binaries, and will have the form
“%d.tmp” (sprintf format).

Shared content can also be executed as a new thread within the Con-
ficker.C’s current process address space. This ability obviates the need for
the reinfection backdoor mechanism seen in previous variants.

4 Domain Rendezvous (“Callhome”) Mechanism

Previous variants Conficker. B and Conficker. B++ incorporated a self-updating
mechanism via pseudo-randomly generated domain names. In short, Con-
ficker includes an algorithm to deterministically generate a set of domain
names each day, and contact those domains throughout the day to check if
an updated version of the worm was available for download.

4.1 Protocol

In Conficker.C, this rendezvous protocol was updated as well, to generate
a massive 50,000 potential call-home domains per day (over and above the
250 per day seen in the previous variants). Although Conficker.C generates
50,000 domains per day, the worm randomly chooses only 500 of those do-
mains to rendezvous with that day. Furthermore, it only attempts to resolve
each of those 500 domains once during the day. This is in stark contrast to
the previous Conficker.B scheme, which generated 250 potential call-home
domains and repeatedly queried all 250 domains once every 2 hours. Thus,
Conficker.C’s use of its callhome domains results in far fewer DNS queries
than that of prior variants (only 500 per day vs. 3,000).

10

Variant B Variant C
Domains / day 250 50,000
Used / day 250 500
Query interval Every 5 seconds | Random [10, 50] second interval
Process repeats Every 2 hours Once per day
Total DNS queries / day | 3,000 500
Enabled on Jan 1, 2009 Apr 1, 2009

Table 1: Comparing rendezvous protocols: Conficker.B vs. Conficker.C

The DNS query intervals are also randomized in Conficker.C to make
the rendezvous protocol more stealthy. Prior variants issued a small number
of DNS queries in parallel at a fixed 5 second intervals. Conficker.C however
issues DNS queries in series and separates each query with a random inter-
val between 10 and 50 seconds. This is likely an effort to avoid triggering
anomaly detection systems that can pick up spikes or fixed patterns in net-
work activity. For a detailed comparison between the rendezvous protocols
in Conficker.B and Conficker.C, see Table 4.1.

4.2 Blacklisting

Previous variants blindly attempted to download a conficker payload from
a callhome domain after resolving the domain to an IP address. However,
Conficker.C filters each IP address of resolved callhome domains before at-
tempting to download an update. The IP address will be rejected if:

e it is a private IP address (192.168.%, 10.*, 172.16.%)
e it is a reserved IP address or multicast address

e it matches an internal IP blacklist

4.3 What happens on a successful rendezvous?

For a Conficker infected host (of any variant), a successful rendezvous is
comprised of the following sequence of events, where the infected host:

1. retrieves a binary data file from a callhome domain for the current
day, using the IP address to which the callhome domain resolves to
fetch the url directly

Conficker.B URL http://ip-address/search?q=N
where N is an integer

Conficker.C URL http://ip-address/

11

2. verifies the digital signature on the encrypted payload as that of the
Conficker author via the rendezvous protocol RSA public key (public
keys listed in Section 8.1)

3. decrypts the encrypted payload and verifies the hash on the decrypted
data, as decrypted from the RSA signature

Upon successfully completing all of the above steps, the Conficker host
writes the decrypted content to a file and executes the file using CreateProcessA.
Furthermore, after a successful rendezvous, the infected Conficker.C host
sleeps for an additional 3 days before resuming the above callhome activity.

5 Cryptography

The Conficker malware family demonstrates effective use of modern cryp-
tography to make injecting innoculating commands into the network of in-
fected machines far more challenging. The signature mechanism appears
generally robust to attack, using standard RSA for signature validation
with 4096 bit modulii (very difficult to factor) and high public exponents
(to thwart other low exponent attacks). Strong randomization is also used
throughout — employing CryptGenRandom using the “Microsoft Base Cryp-
tographic Provider v1.0” or time-seeded srand,rand sequences when said
cryptographic provider is not available.

Conficker.C'is no different in this respect from previous variants, using
the same signature validation and hashing process as Conficker.B for bina-
ries downloaded from rendezvous domains. However, Conficker.C uses this
signature validation to a greater extent than prior variants, including it in
the p2p distribution of executable content as well as for registry values cre-
ated by the worm. The signed registry values undergo an additional layer
of custom obfuscation prior to being stored and the reverse de-obfuscation
prior to being validated using the p2p RSA public key (see Section 8.1 for
cryptographic key details).

6 Discussion

While Conficker has successfully infected millions of machines, what exactly
this massive network will be used for is yet unknown. From our analysis, and
from the research of other members of the security community, the latest
variant Conficker.C'is a robust platform for rapid p2p distribution of binary
content.

The nature of the shared content between Conficker.C peers is not yet
known. However, the treatment of the shared content allows us to make
inferences as to its purpose. For instance, the p2p mechanism optionally
employs CreateThread to execute shared content within the same address

12

space as Conficker.C — suggesting the shared data will merely augment the
overall functionality of Conficker.C rather than replace it entirely. Further
to this point, files stored in the p2p directory have a short lifespan; files are
deleted if they were created more than 10 minutes prior, if space is needed
for new shared files; and the maximum number of files stored is a relatively
small 64. This design targets a high turn-over rate of shared content and
suggests the p2p mechanisms may be used to distribute malicious commands
similar in nature to how a botnet operates.

In contrast, the rendezvous protocol is likely to continue to be used as
a “major update” channel by which the Conficker platform is updated, in
a similar manner as seen before with the move from Conficker.B and Con-
ficker.B++ to Conficker.C. This seems logical, as from the analysis above,
a successful rendezvous results in an entirely new process on the host with a
call to CreateProcessA followed by a prolonged delay in callhome activity.

7 Conclusion

This report details several of the technical advancements in the lastest Con-
ficker variant. Our report is one of many efforts from the security commu-
nity. We hope our results will help the general public and other members
of the security community to better protect against this worm. However,
although our understanding of this malware family continues to improve,
with the massive number of world-wide infections and the ability for peers
to efficiently distribute arbitrary payloads amongst one another, it is likely
that Conficker malware will continue to remain a genuine threat.

13

8 Appendix

8.1 RSA Public Keys

Conficker.B rendezvous public key

Modulus (4096 bit):
:be:
4d:
ca:
Tf:
63:
d5:
cb:
:bd:
al:
dc:
92:
76:
9e:
58:

00:

c3

db:
44
57:
37:
6b:
97:
ba:
3c:
£9:
9c:
07:
44:
34:
53:
21:
99:
72:
68:
£3:
86:
Te:
5f:
93:
9e:
ad:
£2:
03:
52:
85:
44
e6:
72:
2d:

88:
:b2:
70:
1f:
d4:
87:
79:
d2:
52:
ad:
1d:
c2:
Ta:
47 :
00:
a6:
3d:
3b:
66:
11:
do:
4c:
9e:
f6:
8a:
8d:
09:
4d:
ds8:
58:
df:
ad:
21:
3c:
ar:

Exponent:

a8

bc:
18:
fd:
08:
00:
24:

27

49:
e6:
Te:
4c:
bd:
2d:
bc:
4b:
31:
e4:
5d:
ee:
30:
60:
45:
c2:
08:
cc:

68

2f:
ba:
e9:
72:
a6:
e9:
ba:

e’

deé

60:
ba:
35:
23:
23:
a4d:
5b:
93:
69:
da:
03:
:b6:
2f:
a6:
3d:
Te:
19:
56:
1b:

50001

er:
73:
fe:
2d:
57:
el:
3f:
61:

CccC

er:
47:
08:
2d:
e6:
:b7:
73:
49:
25:
f1:
Te:
eb:
40:
e9:
af:
5b:
d4:
98:
4d:
de:
b6:
83:
36:
87:
4c:

74d:
33:
9c:
17:
a3:
8a:
9d:
da:
:fb:
dé:
cb:
70:
a2:
b6:
do:
98:
eb:
9a:
Tb:
38:
8a:

Oc

29:
87:
31:

bc

5f:
£3:
42:
b2:
e2:
03:
cd:
72:

ed:
4c:
dd:
9a:
Of:
48:
36:
£2:
ab:
ed:
15:
1lc:
8e:
1lc:
ed:
dar:
fa:
a8:
dc:
6d:
c2:
:bb:
44 :
33:
9e:
:b6:
£2:
8c:
2b:
2d:
cb:
e8:
44
dé:

(0xc351)

45:
80:
b5:
df:
20:
5b:
d2:
eb:
b7:
T1:
a8:
la:
98:
2c:
97:
fd:
ed:
do:
c6:
ec:
6¢:
43:
cc:
83:
c3:
da:
ff:
9d:
5c:
9a:
25:

ec

e8:
le:

14

5c:
10:
26:
c4d:
4b:
cl:
13:
95:
fa:
04:
00:
bO:
3c:
8a:
21:
di:
50:
20:
9e:
02:
e4:
33:
88:
80:

5b

41:
30:
3f:
03:
T4:
ad:
04:
a3:

dc:
c6:
47 :
9d:
60:
e6:
fc:
T4:
c3:
93:
da:
13:
8e:
Of:
45:
:bc:
1c:
c6:
2e:
dar:
78:
41:
142:
Be:
44 .

ea:
c9:
24:
of:
97:
85:
93:
£3:
eb6:

cd:
96:
ba:
la:
4c:
Ob:
37:
bO:
:fa:
49:
le:
26:
bl:

26

63:
84:
b7:
e3:
ae:
el:
33:
d3:
32:
92:
Oe:
1b:
83:
:bd:
05:
30:
d7:
56:
93:
df:
65:
93:
cb:
db:
fc:
10:
a2:
72:
c8:
fb:
01:
49:
75:
49:

ee:
cd:
di:
eb:
a8:
eb:
99:
8a:
14:
d2:
cf:
d5:
29:
af:
90:
59:
96:
76:
eb:
12:

83:
63:
49:
3a:
£5:
22:
66:
ar:
18:
aa:
£3:
c8:
5b:
6b:
f9:
4a:
61:
3d:
7d:
bb:
17:
87:
34:
bf:
8c:
70:
89:
4c:
1b:
el:
Tf:
33:
4b:
ca:

2c:
99:
da:
f0:
06:
69:
ds8:
60:
:bd:
42:
3a:
0d:
09:
:bl:

25

76

bd:
29:
Te:
c8:
62:
6a:
31:
12:
99:
80:
57:
10:
dé:
£2:
39:
dd:
59:
34:
8b:
45:

79:
ec:
T1:
eb:
44 :
2e:
cO:
30:

07:
cf:
f1:
40:

08:
de:
d4:
39:
8a:
dé6:
40:
£9:
15:
26:
8e:
92:
49:
do:
45:
b3:
12:
06:
f0:
£5:

Conficker.C rendezvous public key

Modulus (4094 bit):
b9:
42:
60:
Be:
a2:

20:
88:
78:
70:

81

fd:
b51:
Oe:
1f:
8e:
db:
3f:
bd:
eb:
50:
34:
20:
d3:
79:
bc:
3a:

2d

49:
Ta:
6a:

do

18

eb:

a2:
e2:
fc:
53:
:bl:
Be:
bf:
0d:
86:
20:
b1:
16:
T1:
a4:
04:
ad:
d3:
c3:
el:
97:
al:
:bc:
81:
41:
0d:
:bd:
83:
do:
bb:
db:
78:
67:
c9:

ea:
8b:
39:
f6:
e0:
£9:
31:
:bl:

13

Exponent:

Conficker.C p2p public key

Modulus (4095 bit):

£2

c2:

28

11:

e2

4d:
59:
e0:
0o7:
e0:
b2:
d3:
ea:
ad:
£5:
dc:
cO:
£5:
3b:
0f:
75:

1c

67:
Te:
Ta:
5b:
e2:
:b5:
ab:
:bf:
al:
:b6:
6f:
Be:
a8:
Oe:
82:
92:
33:
5b:

88

2d:
34:
e8:
a3:
56:
Ob:
92:
:bb:
03:
ce:
de:
2b:
aa:
81:
4f:

ee

59:
2c:
a9:
30:
6d:
96:

50003

22:
fe:
59:
79:
09:
59:
5b:
a8:
62:
ch:
cc:
ac:
d4:
Tb:
cb:
1d:
Be:
3b:
:be:
bf:
Ta:
62:
46:
9a:
6b:
e3:
30:
:5f:
95:
2e:
00:
7d:
bc:
al:

63:
91:
ff:
fd:
35:
bb:
7d:
1c:
56:
el:
£3:
6f:
57:
ba:
fc:
76:
cd:
05:
28:
6d:

ce

83:
cO:
d8:
d4:
2b:
T4:
ef:
81:
e2:

52

04:
Tc:
cl:

94:
23:
62:
52:
de:
d4:
00:
30:
8f:
18:
Oa:
89:
43:
13:
f0:
62:
b3:
£8:
a2:
87:
:b9:
87:
lc:
9e:
89:
bd:
20:
9c:
Te:
16:
:b9:
21:
lc:
fe:

(0xc353)

4f:
5f:
9e:
22:

99

28:
44 :
31:
93:
a2:
ea:
81:
29:
ab:
ef:
03:
35:
2f:
a4d:
2e:
ba:
er:
£9:
2c:
16:
54:

69

3d:
86:
do:
57:
e4:
e8:
le:

15

72:
£9:
d3:
62:
:b4:
c3:
03:
30:
56:
a6:
T7:
63:
be:
e9:
e8:
41:
Te:
£9:
ch:
2d:
19:
f6:
7d:
62:
a6:
8c:
:bl
09:
lc:
do:
08:

94

17:
10:

00:
1c:
54:
76:
62:
ed:
8c:
el:
f6:
1b:
£7:
Ob:
Oe:
92:
14:
4a:
28:
36:
6d:
f0:
f5:
93:
dé:
41:
9b:
1c:
:bb:
03:
72:
Tc:
ca:
:bb:
9c:
33:

41:
cb:
ab:
3e:
39:
24d:
b7:
2a:
le:
be:
bd:
82:
ag:
b8:
55:
79:
4c:
£3:
ch:
b2:
la:
a8:
fb:
50:
43:
ac:
fa:
63:
ee:
fb:
47:

al

32:
46:

87:
2f:
4qd:
db:
e9:
bf:
54:
dar:
c9:
57:
a4:
cc:
03:
3d:
14:
30:
6¢:
90:
30:
12:
le:
06:
af:
19:
21:
78:
cd:
81:
er:
57:
41:
:bc:
20:
58:

33:
05:

Oe

4b:
9a:
ab:
2d:
2d:
4f:
7d:
dc:
73:
1c:
dc:
44

ctf

67:
3c:
la:
6b:
69:
el:
44
£8:
eb:
50:
a8:
al:
43:
ba:
a6:
7d:
49:
ad:

d3

le:
:be:
2f:
5b:
e0:
da:
1d:
11:
94:
d2:
Ge:
69:
36:
09:
:09:
eb:
Be:
53:
ee:
Ta:
:ba:
ba:
47 :
Be:
78:
21:
20:
94:
fc:
78:
8d:
el:
19:

dé

:b0:

48:
3c:
2b:
ba:
34:
90:
1d:
6¢c:
Tc:
e2:
47:
T1:
42:
88:
2e:
01:
06:
f0:
2e:
18:

céd:
15:
78:
04:
56:
a2:
84:
dr:
8c:
db:
fb:
ad:

Ta:
cl:
24 :
17:
61:
dc:
8f:
48:
60:
ab:
b7:
52:
56:
49:
35:
de:
29:
ch:
8b:
d7:
Ge:
42:
09:
4b:
a6:
e6:
2c:
cl:
ac:
8c:
67:
82:
32:
di:
c4:

73:
Oa:
ea:
54:
28:
74:
40:
99:
do:
fe:
63:
fa:
47 :
de:
45:
76:
6d:
94:
9e:
33:
74:
e9:
6a:
ed:
9e:
73:
3c:
af:
eb6:
0d:
fa:
ef:
3f:
09:

91

Exponent:

1f:
39:
94:
02:
70:
f1:
e3:
Be:
16:
05:
Oe:
e2:
60:
:ba:
of:
d3:
72:
cc:
:b9:
a9:
ff:
aa:
4b:
cT:
3f:
e8:
34:

78

cl:
17:
be:
13:

£5

27

£7:
33:
a6:
fb:
20:
el:

Be:
ds8:
41:
ca:

eb

91:
41:
ch:
86:
Ta:
do:
29:

17

cc:
9b:
06:
8d:
20:
cf:
69:
5c:
:b9:
92:
03:
f6:
68:
6d:
bd:

50005

cl:
98:
ba:
cc:
:b0:
f6:
81:
73:
86:
bd:
T7:
40:
:b4:
07:
T7:
cO:
£5:
cf:
£8:
7d:
Te:
09:
Te:
3e:
5b:
eb6:
le:
6f:
67:
5c:
a6:
£7:
ad:
92:

ae:
40:
10:
d8:

b5

01:

93
27

ch:
30:
Te:
bc:
df:
80:
63:
B8:
24 .
dé6:
e0:
7d:
44:
be:
B7:
ba:
T4:
70:
75:
11:
bf:
61:

ccC

05:
Tc:
f5:

c6:
al:
di:
f6:
:bb:
e9:
:ba:
:ba:
eb:
f0:
Be:
b51:
ae:
ed:
39:
Oa:
03:
39:
60:
89:
28:
ea:
6d:
4e:
d3:
53:
6c¢:
a8:
65:
ch:
:ab:
06:
dar:
4a:

(0xc355)

6b

41
03:
26:

cb

94:
ad:
65:
do:
bd:
dé:
02:
8a:

bb

af:
20:
5c:
10:
fc:
49:
f4:
ed:
54:
T4:
e9:
bb:
c2:
17:
8d:
c2:
3e:
8e:
78:
bf:

16

:b5:
19:
al:
Tc:
:4f:
dé:
ar:
ed:
22:
£5:
99:
42:
89:
:bb:
3e:
69:
63:
ce:
46:
35:
dr:
2b:
84:
Oa:
40:
ea:
96:
ca:
ee:
93:
06:
dé:
eb:
9a:

45:
e8:
42:
86:
c9:
30:
92:
de:
90:
c9:
30:
79:
be:
c8:
fc:
07:
Tb:
62:
cb:
76:
d3:
89:
2e:
88:
78:
Oe:
cb:
Of:
9b:
76:
14d:
cb:
3c:
c9:

6¢:
ch:
b3:
cb:
30:
8c:
5b:
a3:
34:
26:
4b:
8e:
e0:
25:

ac

9a:
c6:
4c:
ba:
b1:
24 :
5b:
ed:
fb:
98:
60:
32:
13:
3c:
83:
47:
Tob:
d7:

ctf

d2:
ca:
al:
af:
8e:
82:
09:
8a:
96:
82:
30:
2d:
17:
52:
:ba:
64:
00:
3a:
ba:
4c:
bd:
83:
1b:
el:
05:
a6:
Oe:
Tb:
dd:
£8:
af:
c6:
ch:
:bl:

fc

09:
81:
a6:
4c:
7f:
5c:
T4:
20:
59:
54:
a2:
07:
19:
cT:

d3

1c:
23:
27:
91:

1c

3b:
di:
df:
09:
93:
ff:
ea:
e9:
eb:
4f:
49:
04:
e0:

:b9:
ag:
ca:
£8:
Be:
77
dé6:
63:
fa:
2b:
15:
fa:
ag:
2c:
97:
:b9:
81:
fd:
6¢:
bd:
:bb:
20:
25:
13:
89:
Tb:
67:
69:
46:
02:
:b7:

e9

e3:
8c:
28:

3e:
c9:
02:
97:
di:
51:
d7:
97:
ef:
e4:
Oe:
13:
6b:
95:
11:
81:
eb:
Oc:
11:
bb:
fb:
ea:
13:
cl:
T1:
18:
cd:
ac:
eb:
£2:

99:
4f .
3c:

