Softpanorama

May the source be with you, but remember the KISS principle ;-)
Home Switchboard Unix Administration Red Hat TCP/IP Networks Neoliberalism Toxic Managers
(slightly skeptical) Educational society promoting "Back to basics" movement against IT overcomplexity and  bastardization of classic Unix

Design patterns

News Real Insights into Architecture Come Only From Actual Programming Recommended Links Software Prototyping  LAMP Stack Compilers Algorithms Virtual Software Appliances
Software Life Cycle Models Simplification and KISS Distributed software development Exteme programming as yet another SE fad anti-OO CMM Design patterns
Conceptual Integrity Programming style Unix Component Model Software Architecture courses  Brooks law Humor Etc

It is unfortunate (but unavoidable) that the rise in the popularity of software patterns has led to massive hype. Many use the word "pattern" primarily for its appeal as a hot new buzzword. Such "patterns-hype" ultimately causes disappointment, resentment, and even disdain when the hype proves different than the reality. One might call this the hype-no-cratic oath: First, do no hype!.

In reality patterns are something in between algorithms and standard components.  Some theoreticians have suggested that the study of design patterns has been excessively ad hoc, and that the concept sorely needs to be put on a more formal footing.

At OOPSLA 1999, the Gang of Four were (with their full cooperation) subjected to a show trial [5], in which they were "charged" with numerous crimes against computer science. (They were "convicted" by 2/3 of the "jurors" who attended the trial.) [6]


Top Visited
Switchboard
Latest
Past week
Past month

NEWS CONTENTS

Old News ;-)

[Jul 03, 2021] Mission creep

Highly recommended!
Jul 03, 2021 | en.wikipedia.org

Mission creep is the gradual or incremental expansion of an intervention, project or mission, beyond its original scope, focus or goals , a ratchet effect spawned by initial success. [1] Mission creep is usually considered undesirable due to how each success breeds more ambitious interventions until a final failure happens, stopping the intervention entirely.

The term was originally applied exclusively to military operations , but has recently been applied to many different fields. The phrase first appeared in 1993, in articles published in the Washington Post and in the New York Times concerning the United Nations peacekeeping mission during the Somali Civil War .

...

[Jul 25, 2017] Knuth Computer Programming as an Art

Jul 25, 2017 | www.paulgraham.com

CACM , December 1974

When Communications of the ACM began publication in 1959, the members of ACM'S Editorial Board made the following remark as they described the purposes of ACM'S periodicals [2]:

"If computer programming is to become an important part of computer research and development, a transition of programming from an art to a disciplined science must be effected."
Such a goal has been a continually recurring theme during the ensuing years; for example, we read in 1970 of the "first steps toward transforming the art of programming into a science" [26]. Meanwhile we have actually succeeded in making our discipline a science, and in a remarkably simple way: merely by deciding to call it "computer science."

Implicit in these remarks is the notion that there is something undesirable about an area of human activity that is classified as an "art"; it has to be a Science before it has any real stature. On the other hand, I have been working for more than 12 years on a series of books called "The Art of Computer Programming." People frequently ask me why I picked such a title; and in fact some people apparently don't believe that I really did so, since I've seen at least one bibliographic reference to some books called "The Act of Computer Programming."

In this talk I shall try to explain why I think "Art" is the appropriate word. I will discuss what it means for something to be an art, in contrast to being a science; I will try to examine whether arts are good things or bad things; and I will try to show that a proper viewpoint of the subject will help us all to improve the quality of what we are now doing.

One of the first times I was ever asked about the title of my books was in 1966, during the last previous ACM national meeting held in Southern California. This was before any of the books were published, and I recall having lunch with a friend at the convention hotel. He knew how conceited I was, already at that time, so he asked if I was going to call my books "An Introduction to Don Knuth." I replied that, on the contrary, I was naming the books after him . His name: Art Evans. (The Art of Computer Programming, in person.)

From this story we can conclude that the word "art" has more than one meaning. In fact, one of the nicest things about the word is that it is used in many different senses, each of which is quite appropriate in connection with computer programming. While preparing this talk, I went to the library to find out what people have written about the word "art" through the years; and after spending several fascinating days in the stacks, I came to the conclusion that "art" must be one of the most interesting words in the English language.

The Arts of Old

If we go back to Latin roots, we find ars, artis meaning "skill." It is perhaps significant that the corresponding Greek word was τεχνη , the root of both "technology" and "technique."

Nowadays when someone speaks of "art" you probably think first of "fine arts" such as painting and sculpture, but before the twentieth century the word was generally used in quite a different sense. Since this older meaning of "art" still survives in many idioms, especially when we are contrasting art with science, I would like to spend the next few minutes talking about art in its classical sense.

In medieval times, the first universities were established to teach the seven so-called "liberal arts," namely grammar, rhetoric, logic, arithmetic, geometry, music, and astronomy. Note that this is quite different from the curriculum of today's liberal arts colleges, and that at least three of the original seven liberal arts are important components of computer science. At that time, an "art" meant something devised by man's intellect, as opposed to activities derived from nature or instinct; "liberal" arts were liberated or free, in contrast to manual arts such as plowing (cf. [6]). During the middle ages the word "art" by itself usually meant logic [4], which usually meant the study of syllogisms.

Science vs. Art

The word "science" seems to have been used for many years in about the same sense as "art"; for example, people spoke also of the seven liberal sciences, which were the same as the seven liberal arts [1]. Duns Scotus in the thirteenth century called logic "the Science of Sciences, and the Art of Arts" (cf. [12, p. 34f]). As civilization and learning developed, the words took on more and more independent meanings, "science" being used to stand for knowledge, and "art" for the application of knowledge. Thus, the science of astronomy was the basis for the art of navigation. The situation was almost exactly like the way in which we now distinguish between "science" and "engineering."

Many authors wrote about the relationship between art and science in the nineteenth century, and I believe the best discussion was given by John Stuart Mill. He said the following things, among others, in 1843 [28]:

Several sciences are often necessary to form the groundwork of a single art. Such is the complication of human affairs, that to enable one thing to be done , it is often requisite to know the nature and properties of many things... Art in general consists of the truths of Science, arranged in the most convenient order for practice, instead of the order which is the most convenient for thought. Science groups and arranges its truths so as to enable us to take in at one view as much as possible of the general order of the universe. Art... brings together from parts of the field of science most remote from one another, the truths relating to the production of the different and heterogeneous conditions necessary to each effect which the exigencies of practical life require.
As I was looking up these things about the meanings of "art," I found that authors have been calling for a transition from art to science for at least two centuries. For example, the preface to a textbook on mineralogy, written in 1784, said the following [17]: "Previous to the year 1780, mineralogy, though tolerably understood by many as an Art, could scarce be deemed a Science."

According to most dictionaries "science" means knowledge that has been logically arranged and systematized in the form of general "laws." The advantage of science is that it saves us from the need to think things through in each individual case; we can turn our thoughts to higher-level concepts. As John Ruskin wrote in 1853 [32]: "The work of science is to substitute facts for appearances, and demonstrations for impressions."

It seems to me that if the authors I studied were writing today, they would agree with the following characterization: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it. Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.

Artificial intelligence has been making significant progress, yet there is a huge gap between what computers can do in the foreseeable future and what ordinary people can do. The mysterious insights that people have when speaking, listening, creating, and even when they are programming, are still beyond the reach of science; nearly everything we do is still an art.

From this standpoint it is certainly desirable to make computer programming a science, and we have indeed come a long way in the 15 years since the publication of the remarks I quoted at the beginning of this talk. Fifteen years ago computer programming was so badly understood that hardly anyone even thought about proving programs correct; we just fiddled with a program until we "knew" it worked. At that time we didn't even know how to express the concept that a program was correct, in any rigorous way. It is only in recent years that we have been learning about the processes of abstraction by which programs are written and understood; and this new knowledge about programming is currently producing great payoffs in practice, even though few programs are actually proved correct with complete rigor, since we are beginning to understand the principles of program structure. The point is that when we write programs today, we know that we could in principle construct formal proofs of their correctness if we really wanted to, now that we understand how such proofs are formulated. This scientific basis is resulting in programs that are significantly more reliable than those we wrote in former days when intuition was the only basis of correctness.

The field of "automatic programming" is one of the major areas of artificial intelligence research today. Its proponents would love to be able to give a lecture entitled "Computer Programming as an Artifact" (meaning that programming has become merely a relic of bygone days), because their aim is to create machines that write programs better than we can, given only the problem specification. Personally I don't think such a goal will ever be completely attained, but I do think that their research is extremely important, because everything we learn about programming helps us to improve our own artistry. In this sense we should continually be striving to transform every art into a science: in the process, we advance the art.

Science and Art

Our discussion indicates that computer programming is by now both a science and an art, and that the two aspects nicely complement each other. Apparently most authors who examine such a question come to this same conclusion, that their subject is both a science and an art, whatever their subject is (cf. [25]). I found a book about elementary photography, written in 1893, which stated that "the development of the photographic image is both an art and a science" [13]. In fact, when I first picked up a dictionary in order to study the words "art" and "science," I happened to glance at the editor's preface, which began by saying, "The making of a dictionary is both a science and an art." The editor of Funk & Wagnall's dictionary [27] observed that the painstaking accumulation and classification of data about words has a scientific character, while a well-chosen phrasing of definitions demands the ability to write with economy and precision: "The science without the art is likely to be ineffective; the art without the science is certain to be inaccurate."

When preparing this talk I looked through the card catalog at Stanford library to see how other people have been using the words "art" and "science" in the titles of their books. This turned out to be quite interesting.

For example, I found two books entitled The Art of Playing the Piano [5, 15], and others called The Science of Pianoforte Technique [10], The Science of Pianoforte Practice [30]. There is also a book called The Art of Piano Playing: A Scientific Approach [22].

Then I found a nice little book entitled The Gentle Art of Mathematics [31], which made me somewhat sad that I can't honestly describe computer programming as a "gentle art." I had known for several years about a book called The Art of Computation , published in San Francisco, 1879, by a man named C. Frusher Howard [14]. This was a book on practical business arithmetic that had sold over 400,000 copies in various editions by 1890. I was amused to read the preface, since it shows that Howard's philosophy and the intent of his title were quite different from mine; he wrote: "A knowledge of the Science of Number is of minor importance; skill in the Art of Reckoning is absolutely indispensible."

Several books mention both science and art in their titles, notably The Science of Being and Art of Living by Maharishi Mahesh Yogi [24]. There is also a book called The Art of Scientific Discovery [11], which analyzes how some of the great discoveries of science were made.

So much for the word "art" in its classical meaning. Actually when I chose the title of my books, I wasn't thinking primarily of art in this sense, I was thinking more of its current connotations. Probably the most interesting book which turned up in my search was a fairly recent work by Robert E. Mueller called The Science of Art [29]. Of all the books I've mentioned, Mueller's comes closest to expressing what I want to make the central theme of my talk today, in terms of real artistry as we now understand the term. He observes: "It was once thought that the imaginative outlook of the artist was death for the scientist. And the logic of science seemed to spell doom to all possible artistic flights of fancy." He goes on to explore the advantages which actually do result from a synthesis of science and art.

A scientific approach is generally characterized by the words logical, systematic, impersonal, calm, rational, while an artistic approach is characterized by the words aesthetic, creative, humanitarian, anxious, irrational. It seems to me that both of these apparently contradictory approaches have great value with respect to computer programming.

Emma Lehmer wrote in 1956 that she had found coding to be "an exacting science as well as an intriguing art" [23]. H.S.M. Coxeter remarked in 1957 that he sometimes felt "more like an artist than a scientist" [7]. This was at the time C.P. Snow was beginning to voice his alarm at the growing polarization between "two cultures" of educated people [34, 35]. He pointed out that we need to combine scientific and artistic values if we are to make real progress.

Works of Art

When I'm sitting in an audience listening to a long lecture, my attention usually starts to wane at about this point in the hour. So I wonder, are you getting a little tired of my harangue about "science" and "art"? I really hope that you'll be able to listen carefully to the rest of this, anyway, because now comes the part about which I feel most deeply.

When I speak about computer programming as an art, I am thinking primarily of it as an art form , in an aesthetic sense. The chief goal of my work as educator and author is to help people learn how to write beautiful programs . It is for this reason I was especially pleased to learn recently [32] that my books actually appear in the Fine Arts Library at Cornell University. (However, the three volumes apparently sit there neatly on the shelf, without being used, so I'm afraid the librarians may have made a mistake by interpreting my title literally.)

My feeling is that when we prepare a program, it can be like composing poetry or music; as Andrei Ershov has said [9], programming can give us both intellectual and emotional satisfaction, because it is a real achievement to master complexity and to establish a system of consistent rules.

Furthermore when we read other people's programs, we can recognize some of them as genuine works of art. I can still remember the great thrill it was for me to read the listing of Stan Poley's SOAP II assembly program in 1958; you probably think I'm crazy, and styles have certainly changed greatly since then, but at the time it meant a great deal to me to see how elegant a system program could be, especially by comparison with the heavy-handed coding found in other listings I had been studying at the same time. The possibility of writing beautiful programs, even in assembly language, is what got me hooked on programming in the first place.

Some programs are elegant, some are exquisite, some are sparkling. My claim is that it is possible to write grand programs, noble programs, truly magnificent ones!

Taste and Style

The idea of style in programming is now coming to the forefront at last, and I hope that most of you have seen the excellent little book on Elements of Programming Style by Kernighan and Plauger [16]. In this connection it is most important for us all to remember that there is no one "best" style; everybody has his own preferences, and it is a mistake to try to force people into an unnatural mold. We often hear the saying, "I don't know anything about art, but I know what I like." The important thing is that you really like the style you are using; it should be the best way you prefer to express yourself.

Edsger Dijkstra stressed this point in the preface to his Short Introduction to the Art of Programming [8]:

It is my purpose to transmit the importance of good taste and style in programming, [but] the specific elements of style presented serve only to illustrate what benefits can be derived from "style" in general. In this respect I feel akin to the teacher of composition at a conservatory: He does not teach his pupils how to compose a particular symphony, he must help his pupils to find their own style and must explain to them what is implied by this. (It has been this analogy that made me talk about "The Art of Programming.")
Now we must ask ourselves, What is good style, and what is bad style? We should not be too rigid about this in judging other people's work. The early nineteenth-century philosopher Jeremy Bentham put it this way [3, Bk. 3, Ch. 1]:
Judges of elegance and taste consider themselves as benefactors to the human race, whilst they are really only the interrupters of their pleasure... There is no taste which deserves the epithet good , unless it be the taste for such employments which, to the pleasure actually produced by them, conjoin some contingent or future utility: there is no taste which deserves to be characterized as bad, unless it be a taste for some occupation which has a mischievous tendency.
When we apply our own prejudices to "reform" someone else's taste, we may be unconsciously denying him some entirely legitimate pleasure. That's why I don't condemn a lot of things programmers do, even though I would never enjoy doing them myself. The important thing is that they are creating something they feel is beautiful.

In the passage I just quoted, Bentham does give us some advice about certain principles of aesthetics which are better than others, namely the "utility" of the result. We have some freedom in setting up our personal standards of beauty, but it is especially nice when the things we regard as beautiful are also regarded by other people as useful. I must confess that I really enjoy writing computer programs; and I especially enjoy writing programs which do the greatest good, in some sense.

There are many senses in which a program can be "good," of course. In the first place, it's especially good to have a program that works correctly. Secondly it is often good to have a program that won't be hard to change, when the time for adaptation arises. Both of these goals are achieved when the program is easily readable and understandable to a person who knows the appropriate language.

Another important way for a production program to be good is for it to interact gracefully with its users, especially when recovering from human errors in the input data. It's a real art to compose meaningful error messages or to design flexible input formats which are not error-prone.

Another important aspect of program quality is the efficiency with which the computer's resources are actually being used. I am sorry to say that many people nowadays are condemning program efficiency, telling us that it is in bad taste. The reason for this is that we are now experiencing a reaction from the time when efficiency was the only reputable criterion of goodness, and programmers in the past have tended to be so preoccupied with efficiency that they have produced needlessly complicated code; the result of this unnecessary complexity has been that net efficiency has gone down, due to difficulties of debugging and maintenance.

The real problem is that programmers have spent far too much time worrying about efficiency in the wrong places and at the wrong times; premature optimization is the root of all evil (or at least most of it) in programming.

We shouldn't be penny wise and pound foolish, nor should we always think of efficiency in terms of so many percent gained or lost in total running time or space. When we buy a car, many of us are almost oblivious to a difference of $50 or $100 in its price, while we might make a special trip to a particular store in order to buy a 50 cent item for only 25 cents. My point is that there is a time and place for efficiency; I have discussed its proper role in my paper on structured programming, which appears in the current issue of Computing Surveys [21].

Less Facilities: More Enjoyment

One rather curious thing I've noticed about aesthetic satisfaction is that our pleasure is significantly enhanced when we accomplish something with limited tools. For example, the program of which I personally am most pleased and proud is a compiler I once wrote for a primitive minicomputer which had only 4096 words of memory, 16 bits per word. It makes a person feel like a real virtuoso to achieve something under such severe restrictions.

A similar phenomenon occurs in many other contexts. For example, people often seem to fall in love with their Volkswagens but rarely with their Lincoln Continentals (which presumably run much better). When I learned programming, it was a popular pastime to do as much as possible with programs that fit on only a single punched card. I suppose it's this same phenomenon that makes APL enthusiasts relish their "one-liners." When we teach programming nowadays, it is a curious fact that we rarely capture the heart of a student for computer science until he has taken a course which allows "hands on" experience with a minicomputer. The use of our large-scale machines with their fancy operating systems and languages doesn't really seem to engender any love for programming, at least not at first.

It's not obvious how to apply this principle to increase programmers' enjoyment of their work. Surely programmers would groan if their manager suddenly announced that the new machine will have only half as much memory as the old. And I don't think anybody, even the most dedicated "programming artists," can be expected to welcome such a prospect, since nobody likes to lose facilities unnecessarily. Another example may help to clarify the situation: Film-makers strongly resisted the introduction of talking pictures in the 1920's because they were justly proud of the way they could convey words without sound. Similarly, a true programming artist might well resent the introduction of more powerful equipment; today's mass storage devices tend to spoil much of the beauty of our old tape sorting methods. But today's film makers don't want to go back to silent films, not because they're lazy but because they know it is quite possible to make beautiful movies using the improved technology. The form of their art has changed, but there is still plenty of room for artistry.

How did they develop their skill? The best film makers through the years usually seem to have learned their art in comparatively primitive circumstances, often in other countries with a limited movie industry. And in recent years the most important things we have been learning about programming seem to have originated with people who did not have access to very large computers. The moral of this story, it seems to me, is that we should make use of the idea of limited resources in our own education. We can all benefit by doing occasional "toy" programs, when artificial restrictions are set up, so that we are forced to push our abilities to the limit. We shouldn't live in the lap of luxury all the time, since that tends to make us lethargic. The art of tackling miniproblems with all our energy will sharpen our talents for the real problems, and the experience will help us to get more pleasure from our accomplishments on less restricted equipment.

In a similar vein, we shouldn't shy away from "art for art's sake"; we shouldn't feel guilty about programs that are just for fun. I once got a great kick out of writing a one-statement ALGOL program that invoked an innerproduct procedure in such an unusual way that it calculated the mth prime number, instead of an innerproduct [19]. Some years ago the students at Stanford were excited about finding the shortest FORTRAN program which prints itself out, in the sense that the program's output is identical to its own source text. The same problem was considered for many other languages. I don't think it was a waste of time for them to work on this; nor would Jeremy Bentham, whom I quoted earlier, deny the "utility" of such pastimes [3, Bk. 3, Ch. 1]. "On the contrary," he wrote, "there is nothing, the utility of which is more incontestable. To what shall the character of utility be ascribed, if not to that which is a source of pleasure?"

Providing Beautiful Tools

Another characteristic of modern art is its emphasis on creativity. It seems that many artists these days couldn't care less about creating beautiful things; only the novelty of an idea is important. I'm not recommending that computer programming should be like modern art in this sense, but it does lead me to an observation that I think is important. Sometimes we are assigned to a programming task which is almost hopelessly dull, giving us no outlet whatsoever for any creativity; and at such times a person might well come to me and say, "So programming is beautiful? It's all very well for you to declaim that I should take pleasure in creating elegant and charming programs, but how am I supposed to make this mess into a work of art?"

Well, it's true, not all programming tasks are going to be fun. Consider the "trapped housewife," who has to clean off the same table every day: there's not room for creativity or artistry in every situation. But even in such cases, there is a way to make a big improvement: it is still a pleasure to do routine jobs if we have beautiful things to work with. For example, a person will really enjoy wiping off the dining room table, day after day, if it is a beautifully designed table made from some fine quality hardwood.

Therefore I want to address my closing remarks to the system programmers and the machine designers who produce the systems that the rest of us must work with. Please, give us tools that are a pleasure to use, especially for our routine assignments, instead of providing something we have to fight with. Please, give us tools that encourage us to write better programs, by enhancing our pleasure when we do so.

It's very hard for me to convince college freshmen that programming is beautiful, when the first thing I have to tell them is how to punch "slash slash JoB equals so-and-so." Even job control languages can be designed so that they are a pleasure to use, instead of being strictly functional.

Computer hardware designers can make their machines much more pleasant to use, for example by providing floating-point arithmetic which satisfies simple mathematical laws. The facilities presently available on most machines make the job of rigorous error analysis hopelessly difficult, but properly designed operations would encourage numerical analysts to provide better subroutines which have certified accuracy (cf. [20, p. 204]).

Let's consider also what software designers can do. One of the best ways to keep up the spirits of a system user is to provide routines that he can interact with. We shouldn't make systems too automatic, so that the action always goes on behind the scenes; we ought to give the programmer-user a chance to direct his creativity into useful channels. One thing all programmers have in common is that they enjoy working with machines; so let's keep them in the loop. Some tasks are best done by machine, while others are best done by human insight; and a properly designed system will find the right balance. (I have been trying to avoid misdirected automation for many years, cf. [18].)

Program measurement tools make a good case in point. For years, programmers have been unaware of how the real costs of computing are distributed in their programs. Experience indicates that nearly everybody has the wrong idea about the real bottlenecks in his programs; it is no wonder that attempts at efficiency go awry so often, when a programmer is never given a breakdown of costs according to the lines of code he has written. His job is something like that of a newly married couple who try to plan a balanced budget without knowing how much the individual items like food, shelter, and clothing will cost. All that we have been giving programmers is an optimizing compiler, which mysteriously does something to the programs it translates but which never explains what it does. Fortunately we are now finally seeing the appearance of systems which give the user credit for some intelligence; they automatically provide instrumentation of programs and appropriate feedback about the real costs. These experimental systems have been a huge success, because they produce measurable improvements, and especially because they are fun to use, so I am confident that it is only a matter of time before the use of such systems is standard operating procedure. My paper in Computing Surveys [21] discusses this further, and presents some ideas for other ways in which an appropriate interactive routine can enhance the satisfaction of user programmers.

Language designers also have an obligation to provide languages that encourage good style, since we all know that style is strongly influenced by the language in which it is expressed. The present surge of interest in structured programming has revealed that none of our existing languages is really ideal for dealing with program and data structure, nor is it clear what an ideal language should be. Therefore I look forward to many careful experiments in language design during the next few years.

Summary

To summarize: We have seen that computer programming is an art, because it applies accumulated knowledge to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty. A programmer who subconsciously views himself as an artist will enjoy what he does and will do it better. Therefore we can be glad that people who lecture at computer conferences speak about the state of the Art .

References

1. Bailey, Nathan. The Universal Etymological English Dictionary. T. Cox, London, 1727. See "Art," "Liberal," and "Science."

2. Bauer, Walter F., Juncosa, Mario L., and Perlis, Alan J. ACM publication policies and plans. J. ACM 6 (Apr. 1959), 121-122.

3. Bentham, Jeremy. The Rationale of Reward. Trans. from Theorie des peines et des recompenses, 1811, by Richard Smith, J. & H. L. Hunt, London, 1825.

4. The Century Dictionary and Cyclopedia 1. The Century Co., New York, 1889.

5. Clementi, Muzio. The Art of Playing the Piano. Trans. from L'art de jouer le pianoforte by Max Vogrich. Schirmer, New York, 1898.

6. Colvin, Sidney. "Art." Encyclopaedia Britannica, eds 9, 11, 12, 13, 1875-1926.

7. Coxeter, H. S. M. Convocation address, Proc. 4th Canadian Math. Congress, 1957, pp. 8-10.

8. Dijkstra, Edsger W. EWD316: A Short Introduction to the Art of Programming. T. H. Eindhoven, The Netherlands, Aug. 1971.

9. Ershov, A. P. Aesthetics and the human factor in programming. Comm. ACM 15 (July 1972), 501-505.

10. Fielden, Thomas. The Science of Pianoforte Technique. Macmillan, London, 927.

11. Gore, George. The Art of Scientific Discovery. Longmans, Green, London, 1878.

12. Hamilton, William. Lectures on Logic 1. Win. Blackwood, Edinburgh, 1874.

13. Hodges, John A. Elementary Photography: The "Amateur Photographer" Library 7. London, 1893. Sixth ed, revised and enlarged, 1907, p. 58.

14. Howard, C. Frusher. Howard's Art of Computation and golden rule for equation of payments for schools, business colleges and self-culture .... C.F. Howard, San Francisco, 1879.

15. Hummel, J.N. The Art of Playing the Piano Forte. Boosey, London, 1827.

16. Kernighan B.W., and Plauger, P.J. The Elements of Programming Style. McGraw-Hill, New York, 1974.

17. Kirwan, Richard. Elements of Mineralogy. Elmsly, London, 1784.

18. Knuth, Donald E. Minimizing drum latency time. J. ACM 8 (Apr. 1961), 119-150.

19. Knuth, Donald E., and Merner, J.N. ALGOL 60 confidential. Comm. ACM 4 (June 1961), 268-272.

20. Knuth, Donald E. Seminumerical Algorithms: The Art of Computer Programming 2. Addison-Wesley, Reading, Mass., 1969.

21. Knuth, Donald E. Structured programming with go to statements. Computing Surveys 6 (Dec. 1974), pages in makeup.

22. Kochevitsky, George. The Art of Piano Playing: A Scientific Approach. Summy-Birchard, Evanston, II1., 1967.

23. Lehmer, Emma. Number theory on the SWAC. Proc. Syrup. Applied Math. 6, Amer. Math. Soc. (1956), 103-108.

24. Mahesh Yogi, Maharishi. The Science of Being and Art of Living. Allen & Unwin, London, 1963.

25. Malevinsky, Moses L. The Science of Playwriting. Brentano's, New York, 1925.

26. Manna, Zohar, and Pnueli, Amir. Formalization of properties of functional programs. J. ACM 17 (July 1970), 555-569.

27. Marckwardt, Albert H, Preface to Funk and Wagnall's Standard College Dictionary. Harcourt, Brace & World, New York, 1963, vii.

28. Mill, John Stuart. A System Of Logic, Ratiocinative and Inductive. London, 1843. The quotations are from the introduction, S 2, and from Book 6, Chap. 11 (12 in later editions), S 5.

29. Mueller, Robert E. The Science of Art. John Day, New York, 1967.

30. Parsons, Albert Ross. The Science of Pianoforte Practice. Schirmer, New York, 1886.

31. Pedoe, Daniel. The Gentle Art of Mathematics. English U. Press, London, 1953.

32. Ruskin, John. The Stones of Venice 3. London, 1853.

33. Salton, G.A. Personal communication, June 21, 1974.

34. Snow, C.P. The two cultures. The New Statesman and Nation 52 (Oct. 6, 1956), 413-414.

35. Snow, C.P. The Two Cultures: and a Second Look. Cambridge University Press, 1964.

Copyright 1974, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

[May 05, 2017] William Binney - The Government is Profiling You (The NSA is Spying on You)

Very interesting discussion of how the project of mass surveillance of internet traffic started and what were the major challenges. that's probably where the idea of collecting "envelopes" and correlating them to create social network. Similar to what was done in civil War.
The idea to prevent corruption of medical establishment to prevent Medicare fraud is very interesting.
Notable quotes:
"... I suspect that it's hopelessly unlikely for honest people to complete the Police Academy; somewhere early on the good cops are weeded out and cannot complete training unless they compromise their integrity. ..."
"... 500 Years of History Shows that Mass Spying Is Always Aimed at Crushing Dissent It's Never to Protect Us From Bad Guys No matter which government conducts mass surveillance, they also do it to crush dissent, and then give a false rationale for why they're doing it. ..."
"... People are so worried about NSA don't be fooled that private companies are doing the same thing. ..."
"... In communism the people learned quick they were being watched. The reaction was not to go to protest. ..."
"... Just not be productive and work the system and not listen to their crap. this is all that was required to bring them down. watching people, arresting does not do shit for their cause ..."
Apr 20, 2017 | www.youtube.com
Chad 2 years ago

"People who believe in these rights very much are forced into compromising their integrity"

I suspect that it's hopelessly unlikely for honest people to complete the Police Academy; somewhere early on the good cops are weeded out and cannot complete training unless they compromise their integrity.

Agent76 1 year ago (edited)
January 9, 2014

500 Years of History Shows that Mass Spying Is Always Aimed at Crushing Dissent It's Never to Protect Us From Bad Guys No matter which government conducts mass surveillance, they also do it to crush dissent, and then give a false rationale for why they're doing it.

http://www.washingtonsblog.com/2014/01/government-spying-citizens-always-focuses-crushing-dissent-keeping-us-safe.html

Homa Monfared 7 months ago

I am wondering how much damage your spying did to the Foreign Countries, I am wondering how you changed regimes around the world, how many refugees you helped to create around the world.

Don Kantner, 2 weeks ago

People are so worried about NSA don't be fooled that private companies are doing the same thing. Plus, the truth is if the NSA wasn't watching any fool with a computer could potentially cause an worldwide economic crisis.

Bettor in Vegas 1 year ago

In communism the people learned quick they were being watched. The reaction was not to go to protest.

Just not be productive and work the system and not listen to their crap. this is all that was required to bring them down. watching people, arresting does not do shit for their cause......

[Dec 26, 2016] Does Code Reuse Endanger Secure Software Development?

Dec 26, 2016 | it.slashdot.org
(threatpost.com) 148 Posted by EditorDavid on Saturday December 17, 2016 @07:34PM from the does-code-reuse-endanger-secure-software-development dept. msm1267 quotes ThreatPost: The amount of insecure software tied to reused third-party libraries and lingering in applications long after patches have been deployed is staggering. It's a habitual problem perpetuated by developers failing to vet third-party code for vulnerabilities, and some repositories taking a hands-off approach with the code they host. This scenario allows attackers to target one overlooked component flaw used in millions of applications instead of focusing on a single application security vulnerability.

The real-world consequences have been demonstrated in the past few years with the Heartbleed vulnerability in OpenSSL , Shellshock in GNU Bash , and a deserialization vulnerability exploited in a recent high-profile attack against the San Francisco Municipal Transportation Agency . These are three instances where developers reuse libraries and frameworks that contain unpatched flaws in production applications... According to security experts, the problem is two-fold. On one hand, developers use reliable code that at a later date is found to have a vulnerability. Second, insecure code is used by a developer who doesn't exercise due diligence on the software libraries used in their project.
That seems like a one-sided take, so I'm curious what Slashdot readers think. Does code reuse endanger secure software development?

[Dec 26, 2016] Ask Slashdot: Has Your Team Ever Succumbed To Hype Driven Development?

Dec 26, 2016 | ask.slashdot.org
(daftcode.pl) 332 Posted by EditorDavid on Sunday November 27, 2016 @11:30PM from the TDD-vs-HDD dept. marekkirejczyk , the VP of Engineering at development shop Daftcode, shares a warning about hype-driven development: Someone reads a blog post, it's trending on Twitter, and we just came back from a conference where there was a great talk about it. Soon after, the team starts using this new shiny technology (or software architecture design paradigm), but instead of going faster (as promised) and building a better product, they get into trouble . They slow down, get demotivated, have problems delivering the next working version to production.
Describing behind-schedule teams that "just need a few more days to sort it all out," he blames all the hype surrounding React.js, microservices, NoSQL, and that " Test-Driven Development Is Dead " blog post by Ruby on Rails creator David Heinemeier Hansson. ("The list goes on and on... The root of all evil seems to be social media.")

Does all this sound familiar to any Slashdot readers? Has your team ever succumbed to hype-driven development?

[Jul 31, 2012] Your Code: OOP or POO?

March 5, 2007

Pierre Phaneuf

I semi-agree with your comment about design patterns. Some are just silly, like the Factory pattern, and truly are about working around an issue in the language (for example, the lack of classes as first class object in C++, where you could pass a reference to the Class object instead of a function pointer to the factory). Still, it helps establish a bit of language (saying "a subroutine" instead of "you know, put some code here that we can jump to from a bunch of places, putting the return address over here"), and I'd disagree with Mark in that it eventually leads to the languages supporting the concepts, because it gels into peoples mind as the very same thing, as opposed to people getting stuck to the tiny little difference that don't matter (one guy puts the return address in a register, the other in a global variable, etc). It helps see the big picture.

After a while of "functors" being used in C++, I'm hoping that people will see that they'd really like simple anonymous closures (I'm thinking Perl-style closures, for example), as a first-class construct you can just whip up in the parameters of a function call, say. And it might be possible eventually because we can tell people "what if we made functors even easier and nicer to use?" and they'll know that functors are, see all those they use, and the prospect of getting a better one could catch on.

Other patterns are really more abstract, like the Facade. I mean, "making a function that calls a bunch of functions for you" is kind of a weird feature one would want to have in a language, and one could argue that, well, we already have it!

But I'll have to agree that patterns been really abused. What I particularly despise is some people who seem to insist there can only be one particular way to implement a pattern, when someone looks at my code and asks why I didn't use the Foo pattern, and well, uh, I *did*, but I just did it different than you. That's why there's no concrete "Foo function", it's a *pattern*!

As for the main article, here's a true life example: a co-worker once made a "Convert" class, that didn't have any non-static member, just a few conversion methods. To top it off, he instantiated with "new" rather than just on the stack (this is in C++) and bloody LEAKED IT. Wow.

There's also the opposite trend: the coders who just won't use the language they're using. The most common is the C coders who keep using char* and such in C++, complete with fixed sized buffers, overflows and other fun bits (or when using higher-level languages, can't wrap their heads around a closure). That said, they tend to have to type a lot more to do as much damage as the overzealous OO programmer, so I tend to prefer the C coder (and I can fix their code with small local patches instead of ripping apart some grandiose framework).

Recommended Links

Google matched content

Softpanorama Recommended

Top articles

[Jul 03, 2021] Mission creep Published on Jul 03, 2021 | en.wikipedia.org

Sites

Design Patterns

Unfortunately, SE is positively overrun with design cults, most of them as damaging as any in the Modern period. Influential writers and theoreticians are commonly promoted to practical design gurus in a marketplace desperate for the Next Big Methodology. Design methods hypothesized by their creators in the small, with obscure graphical notations overnight explode into full-blown CASE (computer-aided software engineering) tools, which bring all of the mind-numbing, strait-jacketed, acontextual design theory to the developer. Suffice it to say there are many, many more parallels between architecture cults and software cults...

Design pattern (computer science) - Wikipedia, the free encyclopedia

Some feel that the need for patterns results from using computer languages or techniques with insufficient abstraction ability. Under ideal factoring, a concept should not be copied, but merely referenced. But if something is referenced instead of copied, then there is no "pattern" to label and catalog. Paul Graham writes in the essay Revenge of the Nerds.[1]

This practice is not only common, but institutionalized. For example, in the OO world you hear a good deal about "patterns". I wonder if these patterns are not sometimes evidence of case (c), the human compiler, at work. When I see patterns in my programs, I consider it a sign of trouble. The shape of a program should reflect only the problem it needs to solve. Any other regularity in the code is a sign, to me at least, that I'm using abstractions that aren't powerful enough- often that I'm generating by hand the expansions of some macro that I need to write.

Peter Norvig makes a similar argument, wherein he claims that 16 out of the 23 patterns in the Design Patterns book (which is primarily focused on C++) are simplified or eliminated (via direct language support) in Lisp.[2]

Further arguments along this line are discussed on WikiWikiWeb.[3][4]

Anti-pattern - Wikipedia, the free encyclopedia

Anti-patterns, also referred to as pitfalls, are classes of commonly-reinvented bad solutions to problems. They are studied, as a category, in order that they may be avoided in the future, and that instances of them may be recognized when investigating non-working systems.

Patterns and Software Essential Concepts and Terminology - by Brad Appleton <[email protected]>
http://www.enteract.com/~bradapp/
last modified 02/14/2000

Patterns and Software Essential Concepts and Terminology

FBenchmarks -- Fact, Fiction, or Fantasy?

Non-Software Examples of Software Design Patterns

Addison Wesley Longman - Design Patterns for Object-Oriented Software Development

What are design pattern

Standard method/class combinations
Use mandatory type signatures
+ naming conventions
Good documentation for humans
And can be recognized by tools

Implementing Design Patterns in Java

Doug Lea's Workstation -- very good list of references. Tell much about the author

Books On-line Call Numbers Starting With QA -- just great

Please Read This Page Carefully.... -- que electronic books online


Etc

Society

Groupthink : Two Party System as Polyarchy : Corruption of Regulators : Bureaucracies : Understanding Micromanagers and Control Freaks : Toxic Managers :   Harvard Mafia : Diplomatic Communication : Surviving a Bad Performance Review : Insufficient Retirement Funds as Immanent Problem of Neoliberal Regime : PseudoScience : Who Rules America : Neoliberalism  : The Iron Law of Oligarchy : Libertarian Philosophy

Quotes

War and Peace : Skeptical Finance : John Kenneth Galbraith :Talleyrand : Oscar Wilde : Otto Von Bismarck : Keynes : George Carlin : Skeptics : Propaganda  : SE quotes : Language Design and Programming Quotes : Random IT-related quotesSomerset Maugham : Marcus Aurelius : Kurt Vonnegut : Eric Hoffer : Winston Churchill : Napoleon Bonaparte : Ambrose BierceBernard Shaw : Mark Twain Quotes

Bulletin:

Vol 25, No.12 (December, 2013) Rational Fools vs. Efficient Crooks The efficient markets hypothesis : Political Skeptic Bulletin, 2013 : Unemployment Bulletin, 2010 :  Vol 23, No.10 (October, 2011) An observation about corporate security departments : Slightly Skeptical Euromaydan Chronicles, June 2014 : Greenspan legacy bulletin, 2008 : Vol 25, No.10 (October, 2013) Cryptolocker Trojan (Win32/Crilock.A) : Vol 25, No.08 (August, 2013) Cloud providers as intelligence collection hubs : Financial Humor Bulletin, 2010 : Inequality Bulletin, 2009 : Financial Humor Bulletin, 2008 : Copyleft Problems Bulletin, 2004 : Financial Humor Bulletin, 2011 : Energy Bulletin, 2010 : Malware Protection Bulletin, 2010 : Vol 26, No.1 (January, 2013) Object-Oriented Cult : Political Skeptic Bulletin, 2011 : Vol 23, No.11 (November, 2011) Softpanorama classification of sysadmin horror stories : Vol 25, No.05 (May, 2013) Corporate bullshit as a communication method  : Vol 25, No.06 (June, 2013) A Note on the Relationship of Brooks Law and Conway Law

History:

Fifty glorious years (1950-2000): the triumph of the US computer engineering : Donald Knuth : TAoCP and its Influence of Computer Science : Richard Stallman : Linus Torvalds  : Larry Wall  : John K. Ousterhout : CTSS : Multix OS Unix History : Unix shell history : VI editor : History of pipes concept : Solaris : MS DOSProgramming Languages History : PL/1 : Simula 67 : C : History of GCC developmentScripting Languages : Perl history   : OS History : Mail : DNS : SSH : CPU Instruction Sets : SPARC systems 1987-2006 : Norton Commander : Norton Utilities : Norton Ghost : Frontpage history : Malware Defense History : GNU Screen : OSS early history

Classic books:

The Peter Principle : Parkinson Law : 1984 : The Mythical Man-MonthHow to Solve It by George Polya : The Art of Computer Programming : The Elements of Programming Style : The Unix Hater’s Handbook : The Jargon file : The True Believer : Programming Pearls : The Good Soldier Svejk : The Power Elite

Most popular humor pages:

Manifest of the Softpanorama IT Slacker Society : Ten Commandments of the IT Slackers Society : Computer Humor Collection : BSD Logo Story : The Cuckoo's Egg : IT Slang : C++ Humor : ARE YOU A BBS ADDICT? : The Perl Purity Test : Object oriented programmers of all nations : Financial Humor : Financial Humor Bulletin, 2008 : Financial Humor Bulletin, 2010 : The Most Comprehensive Collection of Editor-related Humor : Programming Language Humor : Goldman Sachs related humor : Greenspan humor : C Humor : Scripting Humor : Real Programmers Humor : Web Humor : GPL-related Humor : OFM Humor : Politically Incorrect Humor : IDS Humor : "Linux Sucks" Humor : Russian Musical Humor : Best Russian Programmer Humor : Microsoft plans to buy Catholic Church : Richard Stallman Related Humor : Admin Humor : Perl-related Humor : Linus Torvalds Related humor : PseudoScience Related Humor : Networking Humor : Shell Humor : Financial Humor Bulletin, 2011 : Financial Humor Bulletin, 2012 : Financial Humor Bulletin, 2013 : Java Humor : Software Engineering Humor : Sun Solaris Related Humor : Education Humor : IBM Humor : Assembler-related Humor : VIM Humor : Computer Viruses Humor : Bright tomorrow is rescheduled to a day after tomorrow : Classic Computer Humor

The Last but not Least Technology is dominated by two types of people: those who understand what they do not manage and those who manage what they do not understand ~Archibald Putt. Ph.D


Copyright © 1996-2021 by Softpanorama Society. www.softpanorama.org was initially created as a service to the (now defunct) UN Sustainable Development Networking Programme (SDNP) without any remuneration. This document is an industrial compilation designed and created exclusively for educational use and is distributed under the Softpanorama Content License. Original materials copyright belong to respective owners. Quotes are made for educational purposes only in compliance with the fair use doctrine.

FAIR USE NOTICE This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available to advance understanding of computer science, IT technology, economic, scientific, and social issues. We believe this constitutes a 'fair use' of any such copyrighted material as provided by section 107 of the US Copyright Law according to which such material can be distributed without profit exclusively for research and educational purposes.

This is a Spartan WHYFF (We Help You For Free) site written by people for whom English is not a native language. Grammar and spelling errors should be expected. The site contain some broken links as it develops like a living tree...

You can use PayPal to to buy a cup of coffee for authors of this site

Disclaimer:

The statements, views and opinions presented on this web page are those of the author (or referenced source) and are not endorsed by, nor do they necessarily reflect, the opinions of the Softpanorama society. We do not warrant the correctness of the information provided or its fitness for any purpose. The site uses AdSense so you need to be aware of Google privacy policy. You you do not want to be tracked by Google please disable Javascript for this site. This site is perfectly usable without Javascript.

Last modified: March 03, 2020