May the source be with you, but remember the KISS principle ;-)

Contents Bulletin Scripting in shell and Perl Network troubleshooting History Humor

Bash Control Structures



Recommended  Links

Pipes Arithmetic expressions Comparison operators BASH Debugging
if statements Loops in Shell Pipes in Loops case select Sequences of commands Care and Feeding of Functions in Shell
Seq command Advanced navigation Sysadmin Horror Stories Shell history Tips Humor Etc

We can distinguish the following bash control structures:

BASH supports the typical for other shells set of high level flow control constructs. Most of them were introduced by Born Shell:

Be warned: the syntax is not pretty.

One of the big improvements that modern versions of bash have when compared with the original Bourne shell is in the area of arithmetic. Bash re-implemented major advances of ksh93 and now have ((...)) constructs. Paradoxically early versions of the Unix shell had no built-in arithmetic; it had to be done by invoking a separate executable (expr),


even just to add 1 to a variable.

All conditional statements in shell depends on the expressions and due to the age of the shell (Borne shell it's more then 30 years old) there are many historical layers with different capabilities.


Old News ;-)

[Dec 06, 2015] Bash For Loop Examples

A very nice tutorial by Vivek Gite (created October 31, 2008 last updated June 24, 2015). His mistake is putting new for loop too far inside the tutorial. It should emphazied, not hidden.
June 24, 2015 |

... ... ...

Bash v4.0+ has inbuilt support for setting up a step value using {START..END..INCREMENT} syntax:

echo "Bash version ${BASH_VERSION}..."
for i in {0..10..2}
     echo "Welcome $i times"

Sample outputs:

Bash version 4.0.33(0)-release...
Welcome 0 times
Welcome 2 times
Welcome 4 times
Welcome 6 times
Welcome 8 times
Welcome 10 times

... ... ...

Three-expression bash for loops syntax

This type of for loop share a common heritage with the C programming language. It is characterized by a three-parameter loop control expression; consisting of an initializer (EXP1), a loop-test or condition (EXP2), and a counting expression (EXP3).

for (( EXP1; EXP2; EXP3 ))

A representative three-expression example in bash as follows:

for (( c=1; c<=5; c++ ))
   echo "Welcome $c times"
... ... ...

Jadu Saikia, November 2, 2008, 3:37 pm

Nice one. All the examples are explained well, thanks Vivek.

seq 1 2 20
output can also be produced using jot

jot – 1 20 2

The infinite loops as everyone knows have the following alternatives.

while :


Andi Reinbrech, November 18, 2010, 7:42 pm
I know this is an ancient thread, but thought this trick might be helpful to someone:

For the above example with all the cuts, simply do

set `echo $line`

This will split line into positional parameters and you can after the set simply say

F1=$1; F2=$2; F3=$3

I used this a lot many years ago on solaris with "set `date`", it neatly splits the whole date string into variables and saves lots of messy cutting :-)

… no, you can't change the FS, if it's not space, you can't use this method

Peko, July 16, 2009, 6:11 pm
Hi Vivek,
Thanks for this a useful topic.

IMNSHO, there may be something to modify here
Latest bash version 3.0+ has inbuilt support for setting up a step value:

for i in {1..5}
1) The increment feature seems to belong to the version 4 of bash.
Accordingly, my bash v3.2 does not include this feature.

BTW, where did you read that it was 3.0+ ?
(I ask because you may know some good website of interest on the subject).

2) The syntax is {} where from, to, step are 3 integers.
You code is missing the increment.

Note that GNU Bash documentation may be bugged at this time,
because on GNU Bash manual, you will find the syntax {x..y[incr]}
which may be a typo. (missing the second ".." between y and increment).


The Bash Hackers page
again, see
seeems to be more accurate,
but who knows ? Anyway, at least one of them may be right… ;-)

Keep on the good work of your own,
Thanks a million.

- Peko

Michal Kaut July 22, 2009, 6:12 am

is there a simple way to control the number formatting? I use several computers, some of which have non-US settings with comma as a decimal point. This means that
for x in $(seq 0 0.1 1) gives 0 0.1 0.2 … 1 one some machines and 0 0,1 0,2 … 1 on other.
Is there a way to force the first variant, regardless of the language settings? Can I, for example, set the keyboard to US inside the script? Or perhaps some alternative to $x that would convert commas to points?
(I am sending these as parameters to another code and it won't accept numbers with commas…)

The best thing I could think of is adding x=`echo $x | sed s/,/./` as a first line inside the loop, but there should be a better solution? (Interestingly, the sed command does not seem to be upset by me rewriting its variable.)


Peko July 22, 2009, 7:27 am

To Michal Kaut:

Hi Michal,

Such output format is configured through LOCALE settings.

I tried :

export LC_CTYPE="en_EN.UTF-8″; seq 0 0.1 1

and it works as desired.

You just have to find the exact value for LC_CTYPE that fits to your systems and your needs.


Peko July 22, 2009, 2:29 pm

To Michal Kaus [2]

Ooops – ;-)
Instead of LC_CTYPE,
LC_NUMERIC should be more appropriate
(Although LC_CTYPE is actually yielding to the same result – I tested both)

By the way, Vivek has already documented the matter :

Philippe Petrinko October 30, 2009, 8:35 am

To Vivek:
Regarding your last example, that is : running a loop through arguments given to the script on the command line, there is a simplier way of doing this:
# instead of:
# FILES="$@"
# for f in $FILES

# use the following syntax
for arg
# whatever you need here – try : echo "$arg"

Of course, you can use any variable name, not only "arg".

Philippe Petrinko November 11, 2009, 11:25 am

To tdurden:

Why would'nt you use

1) either a [for] loop
for old in * ; do mv ${old} ${old}.new; done

2) Either the [rename] command ?
excerpt form "man rename" :

RENAME(1) Perl Programmers Reference Guide RENAME(1)

rename – renames multiple files

rename [ -v ] [ -n ] [ -f ] perlexpr [ files ]

"rename" renames the filenames supplied according to the rule specified
as the first argument. The perlexpr argument is a Perl expression
which is expected to modify the $_ string in Perl for at least some of
the filenames specified. If a given filename is not modified by the
expression, it will not be renamed. If no filenames are given on the
command line, filenames will be read via standard input.

For example, to rename all files matching "*.bak" to strip the
extension, you might say

rename 's/\.bak$//' *.bak

To translate uppercase names to lower, you'd use

rename 'y/A-Z/a-z/' *

- Philippe

Philippe Petrinko November 11, 2009, 9:27 pm

If you set the shell option extglob, Bash understands some more powerful patterns. Here, a is one or more pattern, separated by the pipe-symbol (|).

?() Matches zero or one occurrence of the given patterns
*() Matches zero or more occurrences of the given patterns
+() Matches one or more occurrences of the given patterns
@() Matches one of the given patterns
!() Matches anything except one of the given patterns


Philippe Petrinko November 12, 2009, 3:44 pm

To Sean:
Right, the more sharp a knife is, the easier it can cut your fingers…

I mean: There are side-effects to the use of file globbing (like in [ for f in * ] ) , when the globbing expression matches nothing: the globbing expression is not susbtitued.

Then you might want to consider using [ nullglob ] shell extension,
to prevent this.

Devil hides in detail ;-)

Dominic January 14, 2010, 10:04 am

There is an interesting difference between the exit value for two different for looping structures (hope this comes out right):
for (( c=1; c<=2; c++ )) do echo -n "inside (( )) loop c is $c, "; done; echo "done (( )) loop c is $c"
for c in {1..2}; do echo -n "inside { } loop c is $c, "; done; echo "done { } loop c is $c"

You see that the first structure does a final increment of c, the second does not. The first is more useful IMO because if you have a conditional break in the for loop, then you can subsequently test the value of $c to see if the for loop was broken or not; with the second structure you can't know whether the loop was broken on the last iteration or continued to completion.

Dominic January 14, 2010, 10:09 am

sorry, my previous post would have been clearer if I had shown the output of my code snippet, which is:
inside (( )) loop c is 1, inside (( )) loop c is 2, done (( )) loop c is 3
inside { } loop c is 1, inside { } loop c is 2, done { } loop c is 2

Philippe Petrinko March 9, 2010, 2:34 pm


And, again, as stated many times up there, using [seq] is counter productive, because it requires a call to an external program, when you should Keep It Short and Simple, using only bash internals functions:

for ((c=1; c<21; c+=2)); do echo "Welcome $c times" ; done

(and I wonder why Vivek is sticking to that old solution which should be presented only for historical reasons when there was no way of using bash internals.
By the way, this historical recall should be placed only at topic end, and not on top of the topic, which makes newbies sticking to the not-up-to-date technique ;-) )

Sean March 9, 2010, 11:15 pm

I have a comment to add about using the builtin for (( … )) syntax. I would agree the builtin method is cleaner, but from what I've noticed with other builtin functionality, I had to check the speed advantage for myself. I wrote the following files:

for ((i=1;i<=1000000;i++))
echo "Output $i"

for i in $(seq 1 1000000)
echo "Output $i"

And here were the results that I got:
time ./
real 0m22.122s
user 0m18.329s
sys 0m3.166s

time ./
real 0m19.590s
user 0m15.326s
sys 0m2.503s

The performance increase isn't too significant, especially when you are probably going to be doing something a little more interesting inside of the for loop, but it does show that builtin commands are not necessarily faster.

Andi Reinbrech November 18, 2010, 8:35 pm

The reason why the external seq is faster, is because it is executed only once, and returns a huge splurb of space separated integers which need no further processing, apart from the for loop advancing to the next one for the variable substitution.

The internal loop is a nice and clean/readable construct, but it has a lot of overhead. The check expression is re-evaluated on every iteration, and a variable on the interpreter's heap gets incremented, possibly checked for overflow etc. etc.

Note that the check expression cannot be simplified or internally optimised by the interpreter because the value may change inside the loop's body (yes, there are cases where you'd want to do this, however rare and stupid they may seem), hence the variables are volatile and get re-evaluted.

I.e. botom line, the internal one has more overhead, the "seq" version is equivalent to either having 1000000 integers inside the script (hard coded), or reading once from a text file with 1000000 integers with a cat. Point being that it gets executed only once and becomes static.

OK, blah blah fishpaste, past my bed time :-)


Anthony Thyssen June 4, 2010, 6:53 am

The {1..10} syntax is pretty useful as you can use a variable with it!

echo {1..${limit}}

You need to eval it to get it to work!

eval "echo {1..${limit}}"
1 2 3 4 5 6 7 8 9 10

'seq' is not avilable on ALL system (MacOSX for example)
and BASH is not available on all systems either.

You are better off either using the old while-expr method for computer compatiblity!

   limit=10; n=1;
   while [ $n -le 10 ]; do
     echo $n;
     n=`expr $n + 1`;

Alternativally use a seq() function replacement…

 # seq_count 10
seq_count() {
  i=1; while [ $i -le $1 ]; do echo $i; i=`expr $i + 1`; done
# simple_seq 1 2 10
simple_seq() {
  i=$1; while [ $i -le $3 ]; do echo $i; i=`expr $i + $2`; done
seq_integer() {
    if [ "X$1" = "X-f" ]
    then format="$2"; shift; shift
    else format="%d"
    case $# in
    1) i=1 inc=1 end=$1 ;;
    2) i=$1 inc=1 end=$2 ;;
    *) i=$1 inc=$2 end=$3 ;;
    while [ $i -le $end ]; do
      printf "$format\n" $i;
      i=`expr $i + $inc`;

Edited: by Admin – added code tags.

TheBonsai June 4, 2010, 9:57 am

The Bash C-style for loop was taken from KSH93, thus I guess it's at least portable towards Korn and Z.

The seq-function above could use i=$((i + inc)), if only POSIX matters. expr is obsolete for those things, even in POSIX.

Philippe Petrinko June 4, 2010, 10:15 am

Right Bonsai,
( )

But FOR C-style does not seem to be POSIXLY-correct…

Read on-line reference issue 6/2004,
Top is here,

and the Shell and Utilities volume (XCU) T.OC. is here
doc is:

and FOR command:

Anthony Thyssen June 6, 2010, 7:18 am

TheBonsai wrote…. "The seq-function above could use i=$((i + inc)), if only POSIX matters. expr is obsolete for those things, even in POSIX."

I am not certain it is in Posix. It was NOT part of the original Bourne Shell, and on some machines, I deal with Bourne Shell. Not Ksh, Bash, or anything else.

Bourne Shell syntax works everywhere! But as 'expr' is a builtin in more modern shells, then it is not a big loss or slow down.

This is especially important if writing a replacement command, such as for "seq" where you want your "just-paste-it-in" function to work as widely as possible.

I have been shell programming pretty well all the time since 1988, so I know what I am talking about! Believe me.

MacOSX has in this regard been the worse, and a very big backward step in UNIX compatibility. 2 year after it came out, its shell still did not even understand most of the normal 'test' functions. A major pain to write shells scripts that need to also work on this system.

TheBonsai June 6, 2010, 12:35 pm

Yea, the question was if it's POSIX, not if it's 100% portable (which is a difference). The POSIX base more or less is a subset of the Korn features (88, 93), pure Bourne is something "else", I know. Real portability, which means a program can go wherever UNIX went, only in C ;)

Philippe Petrinko November 22, 2010, 8:23 am

And if you want to get rid of double-quotes, use:

one-liner code:
while read; do record=${REPLY}; echo ${record}|while read -d ","; do field="${REPLY#\"}"; field="${field%\"}"; echo ${field}; done; done<data

script code, added of some text to better see record and field breakdown:

while read
echo "New record"
echo ${record}|while read -d ,
echo "Field is :${field}:"

Does it work with your data?

- PP

Philippe Petrinko November 22, 2010, 9:01 am

Of course, all the above code was assuming that your CSV file is named "data".

If you want to use anyname with the script, replace:




And then use your script file (named for instance "myScript") with standard input redirection:

myScript < anyFileNameYouWant


Philippe Petrinko November 22, 2010, 11:28 am

well no there is a bug, last field of each record is not read – it needs a workout and may be IFS modification ! After all that's what it was built for… :O)

Anthony Thyssen November 22, 2010, 11:31 pm

Another bug is the inner loop is a pipeline, so you can't assign variables for use later in the script. but you can use '<<<' to break the pipeline and avoid the echo.

But this does not help when you have commas within the quotes! Which is why you needed quotes in the first place.

In any case It is a little off topic. Perhaps a new thread for reading CVS files in shell should be created.

Philippe Petrinko November 24, 2010, 6:29 pm

Would you try this one-liner script on your CSV file?

This one-liner assumes that CSV file named [data] has __every__ field double-quoted.

while read; do r="${REPLY#\"}";echo "${r//\",\"/\"}"|while read -d \";do echo "Field is :${REPLY}:";done;done<data

Here is the same code, but for a script file, not a one-liner tweak.

# script
# 1) Usage
# This script reads from standard input
# any CSV with double-quoted data fields
# and breaks down each field on standard output
# 2) Within each record (line), _every_ field MUST:
# - Be surrounded by double quotes,
# - and be separated from preceeding field by a comma
# (not the first field of course, no comma before the first field)
while read
echo "New record" # this is not mandatory-just for explanation
# store REPLY and remove opening double quote
# replace every "," by a single double quote
echo ${record}|while read -d \"
# store REPLY into variable "field"
echo "Field is :${field}:" # just for explanation

This script named here [] must be used so: < my-cvs-file-with-doublequotes

Philippe Petrinko November 24, 2010, 6:35 pm


By the way, using [REPLY] in the outer loop _and_ the inner loop is not a bug.
As long as you know what you do, this is not problem, you just have to store [REPLY] value conveniently, as this script shows.

TheBonsai March 8, 2011, 6:26 am
for ((i=1; i<=20; i++)); do printf "%02d\n" "$i"; done

nixCraft March 8, 2011, 6:37 am

+1 for printf due to portability, but you can use bashy .. syntax too

for i in {01..20}; do echo "$i"; done

TheBonsai March 8, 2011, 6:48 am

Well, it isn't portable per se, it makes it portable to pre-4 Bash versions.

I think a more or less "portable" (in terms of POSIX, at least) code would be

while [ "$((i >= 20))" -eq 0 ]; do
  printf "%02d\n" "$i"

Philip Ratzsch April 20, 2011, 5:53 am

I didn't see this in the article or any of the comments so I thought I'd share. While this is a contrived example, I find that nesting two groups can help squeeze a two-liner (once for each range) into a one-liner:

for num in {{1..10},{15..20}};do echo $num;done

Great reference article!

Philippe Petrinko April 20, 2011, 8:23 am

Nice thing to think of, using brace nesting, thanks for sharing.

Philippe Petrinko May 6, 2011, 10:13 am

Hello Sanya,

That would be because brace expansion does not support variables. I have to check this.
Anyway, Keep It Short and Simple: (KISS) here is a simple solution I already gave above:

for (( x = $xstart; x <= $xend; x += $xstep)); do echo $x;done

Actually, POSIX compliance allows to forget $ in for quotes, as said before, you could also write:

for (( x = xstart; x <= xend; x += xstep)); do echo $x;done

Philippe Petrinko May 6, 2011, 10:48 am


Actually brace expansion happens __before__ $ parameter exapansion, so you cannot use it this way.

Nevertheless, you could overcome this this way:

max=10; for i in $(eval echo {1..$max}); do echo $i; done

Sanya May 6, 2011, 11:42 am

Hello, Philippe

Thanks for your suggestions
You basically confirmed my findings, that bash constructions are not as simple as zsh ones.
But since I don't care about POSIX compliance, and want to keep my scripts "readable" for less experienced people, I would prefer to stick to zsh where my simple for-loop works

Cheers, Sanya

Philippe Petrinko May 6, 2011, 12:07 pm


First, you got it wrong: solutions I gave are not related to POSIX, I just pointed out that POSIX allows not to use $ in for (( )), which is just a little bit more readable – sort of.

Second, why do you see this less readable than your [zsh] [for loop]?

for (( x = start; x <= end; x += step)) do
echo "Loop number ${x}"

It is clear that it is a loop, loop increments and limits are clear.

IMNSHO, if anyone cannot read this right, he should not be allowed to code. :-D


Anthony Thyssen May 8, 2011, 11:30 pm

If you are going to do… $(eval echo {1..$max});
You may as well use "seq" or one of the many other forms.
See all the other comments on doing for loops.

Tom P May 19, 2011, 12:16 pm

I am trying to use the variable I set in the for line on to set another variable with a different extension. Couldn't get this to work and couldnt find it anywhere on the web… Can someone help.


FILE_TOKEN=`cat /tmp/All_Tokens.txt`
for token in $FILE_TOKEN
A1_$token=`grep $A1_token /file/path/file.txt | cut -d ":" -f2`

my goal is to take the values from the ALL Tokens file and set a new variable with A1_ infront of it… This tells be that A1_ is not a command…

[Sep 10, 2010] bash iterator trick

The UNIX Blog

A neat little feature I never new existed in bash is being able to iterate over a sequence of number in a more or less C-esque manner. Coming from Bourne/Korn shell background creating an elegant iterator is always a slight nuisance, since you would come up with something like this to iterate over a sequence of numbers:

while [ $i -lt 10 ]; do
i=`expr $i + 1`;

Well, not exactly the most elegant solution. With bash on the other hand it can be done as simple as:

for((i=1; $i<10; i++)); do

Simple and to the point.

Recommended Links

Softpanorama hot topic of the month

Softpanorama Recommended

Please visit  Heiner Steven SHELLdorado  the best shell scripting site on the Internet
Please visit nixCraft
 blog by

Advanced Bash-Scripting Guide


FAIR USE NOTICE This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in our efforts to advance understanding of environmental, political, human rights, economic, democracy, scientific, and social justice issues, etc. We believe this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit exclusivly for research and educational purposes.   If you wish to use copyrighted material from this site for purposes of your own that go beyond 'fair use', you must obtain permission from the copyright owner. 

ABUSE: IPs or network segments from which we detect a stream of probes might be blocked for no less then 90 days. Multiple types of probes increase this period.  


Groupthink : Two Party System as Polyarchy : Corruption of Regulators : Bureaucracies : Understanding Micromanagers and Control Freaks : Toxic Managers :   Harvard Mafia : Diplomatic Communication : Surviving a Bad Performance Review : Insufficient Retirement Funds as Immanent Problem of Neoliberal Regime : PseudoScience : Who Rules America : Neoliberalism  : The Iron Law of Oligarchy : Libertarian Philosophy


War and Peace : Skeptical Finance : John Kenneth Galbraith :Talleyrand : Oscar Wilde : Otto Von Bismarck : Keynes : George Carlin : Skeptics : Propaganda  : SE quotes : Language Design and Programming Quotes : Random IT-related quotesSomerset Maugham : Marcus Aurelius : Kurt Vonnegut : Eric Hoffer : Winston Churchill : Napoleon Bonaparte : Ambrose BierceBernard Shaw : Mark Twain Quotes


Vol 25, No.12 (December, 2013) Rational Fools vs. Efficient Crooks The efficient markets hypothesis : Political Skeptic Bulletin, 2013 : Unemployment Bulletin, 2010 :  Vol 23, No.10 (October, 2011) An observation about corporate security departments : Slightly Skeptical Euromaydan Chronicles, June 2014 : Greenspan legacy bulletin, 2008 : Vol 25, No.10 (October, 2013) Cryptolocker Trojan (Win32/Crilock.A) : Vol 25, No.08 (August, 2013) Cloud providers as intelligence collection hubs : Financial Humor Bulletin, 2010 : Inequality Bulletin, 2009 : Financial Humor Bulletin, 2008 : Copyleft Problems Bulletin, 2004 : Financial Humor Bulletin, 2011 : Energy Bulletin, 2010 : Malware Protection Bulletin, 2010 : Vol 26, No.1 (January, 2013) Object-Oriented Cult : Political Skeptic Bulletin, 2011 : Vol 23, No.11 (November, 2011) Softpanorama classification of sysadmin horror stories : Vol 25, No.05 (May, 2013) Corporate bullshit as a communication method  : Vol 25, No.06 (June, 2013) A Note on the Relationship of Brooks Law and Conway Law


Fifty glorious years (1950-2000): the triumph of the US computer engineering : Donald Knuth : TAoCP and its Influence of Computer Science : Richard Stallman : Linus Torvalds  : Larry Wall  : John K. Ousterhout : CTSS : Multix OS Unix History : Unix shell history : VI editor : History of pipes concept : Solaris : MS DOSProgramming Languages History : PL/1 : Simula 67 : C : History of GCC developmentScripting Languages : Perl history   : OS History : Mail : DNS : SSH : CPU Instruction Sets : SPARC systems 1987-2006 : Norton Commander : Norton Utilities : Norton Ghost : Frontpage history : Malware Defense History : GNU Screen : OSS early history

Classic books:

The Peter Principle : Parkinson Law : 1984 : The Mythical Man-MonthHow to Solve It by George Polya : The Art of Computer Programming : The Elements of Programming Style : The Unix Hater’s Handbook : The Jargon file : The True Believer : Programming Pearls : The Good Soldier Svejk : The Power Elite

Most popular humor pages:

Manifest of the Softpanorama IT Slacker Society : Ten Commandments of the IT Slackers Society : Computer Humor Collection : BSD Logo Story : The Cuckoo's Egg : IT Slang : C++ Humor : ARE YOU A BBS ADDICT? : The Perl Purity Test : Object oriented programmers of all nations : Financial Humor : Financial Humor Bulletin, 2008 : Financial Humor Bulletin, 2010 : The Most Comprehensive Collection of Editor-related Humor : Programming Language Humor : Goldman Sachs related humor : Greenspan humor : C Humor : Scripting Humor : Real Programmers Humor : Web Humor : GPL-related Humor : OFM Humor : Politically Incorrect Humor : IDS Humor : "Linux Sucks" Humor : Russian Musical Humor : Best Russian Programmer Humor : Microsoft plans to buy Catholic Church : Richard Stallman Related Humor : Admin Humor : Perl-related Humor : Linus Torvalds Related humor : PseudoScience Related Humor : Networking Humor : Shell Humor : Financial Humor Bulletin, 2011 : Financial Humor Bulletin, 2012 : Financial Humor Bulletin, 2013 : Java Humor : Software Engineering Humor : Sun Solaris Related Humor : Education Humor : IBM Humor : Assembler-related Humor : VIM Humor : Computer Viruses Humor : Bright tomorrow is rescheduled to a day after tomorrow : Classic Computer Humor

The Last but not Least

Copyright © 1996-2016 by Dr. Nikolai Bezroukov. was created as a service to the UN Sustainable Development Networking Programme (SDNP) in the author free time. This document is an industrial compilation designed and created exclusively for educational use and is distributed under the Softpanorama Content License.

The site uses AdSense so you need to be aware of Google privacy policy. You you do not want to be tracked by Google please disable Javascript for this site. This site is perfectly usable without Javascript.

Original materials copyright belong to respective owners. Quotes are made for educational purposes only in compliance with the fair use doctrine.

FAIR USE NOTICE This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available to advance understanding of computer science, IT technology, economic, scientific, and social issues. We believe this constitutes a 'fair use' of any such copyrighted material as provided by section 107 of the US Copyright Law according to which such material can be distributed without profit exclusively for research and educational purposes.

This is a Spartan WHYFF (We Help You For Free) site written by people for whom English is not a native language. Grammar and spelling errors should be expected. The site contain some broken links as it develops like a living tree...

You can use PayPal to make a contribution, supporting development of this site and speed up access. In case is down you can use the at


The statements, views and opinions presented on this web page are those of the author (or referenced source) and are not endorsed by, nor do they necessarily reflect, the opinions of the author present and former employers, SDNP or any other organization the author may be associated with. We do not warrant the correctness of the information provided or its fitness for any purpose.

Last modified: February 21, 2017